Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65.230
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1347-D1354, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37870445

RESUMO

Medicinal plants have garnered significant attention in ethnomedicine and traditional medicine due to their potential antitumor, anti-inflammatory and antioxidant properties. Recent advancements in genome sequencing and synthetic biology have revitalized interest in natural products. Despite the availability of sequenced genomes and transcriptomes of these plants, the absence of publicly accessible gene annotations and tabular formatted gene expression data has hindered their effective utilization. To address this pressing issue, we have developed IMP (Integrated Medicinal Plantomics), a freely accessible platform at https://www.bic.ac.cn/IMP. IMP curated a total of 8 565 672 genes for 84 high-quality genome assemblies, and 2156 transcriptome sequencing samples encompassing various organs, tissues, developmental stages and stimulations. With the integrated 10 analysis modules, users could simply examine gene annotations, sequences, functions, distributions and expressions in IMP in a one-stop mode. We firmly believe that IMP will play a vital role in enhancing the understanding of molecular metabolic pathways in medicinal plants or plants with medicinal benefits, thereby driving advancements in synthetic biology, and facilitating the exploration of natural sources for valuable chemical constituents like drug discovery and drug production.


Assuntos
Plantas Medicinais , Software , Transcriptoma , Mapeamento Cromossômico , Genômica , Anotação de Sequência Molecular , Plantas Medicinais/genética , Plantas Medicinais/química
2.
Nucleic Acids Res ; 52(D1): D1508-D1518, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37897343

RESUMO

Knowledge of the collective activities of individual plants together with the derived clinical effects and targeted disease associations is useful for plant-based biomedical research. To provide the information in complement to the established databases, we introduced a major update of CMAUP database, previously featured in NAR. This update includes (i) human transcriptomic changes overlapping with 1152 targets of 5765 individual plants, covering 74 diseases from 20 027 patient samples; (ii) clinical information for 185 individual plants in 691 clinical trials; (iii) drug development information for 4694 drug-producing plants with metabolites developed into approved or clinical trial drugs; (iv) plant and human disease associations (428 737 associations by target, 220 935 reversion of transcriptomic changes, 764 and 154121 associations by clinical trials of individual plants and plant ingredients); (v) the location of individual plants in the phylogenetic tree for navigating taxonomic neighbors, (vi) DNA barcodes of 3949 plants, (vii) predicted human oral bioavailability of plant ingredients by the established SwissADME and HobPre algorithm, (viii) 21-107% increase of CMAUP data over the previous version to cover 60 222 chemical ingredients, 7865 plants, 758 targets, 1399 diseases, 238 KEGG human pathways, 3013 gene ontologies and 1203 disease ontologies. CMAUP update version is freely accessible at https://bidd.group/CMAUP/index.html.


Assuntos
Bases de Dados Factuais , Compostos Fitoquímicos , Plantas Medicinais , Humanos , Filogenia , Plantas Medicinais/química , Plantas Medicinais/classificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
3.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36416120

RESUMO

Medicinal plants are the main source of natural metabolites with specialised pharmacological activities and have been widely examined by plant researchers. Numerous omics studies of medicinal plants have been performed to identify molecular markers of species and functional genes controlling key biological traits, as well as to understand biosynthetic pathways of bioactive metabolites and the regulatory mechanisms of environmental responses. Omics technologies have been widely applied to medicinal plants, including as taxonomics, transcriptomics, metabolomics, proteomics, genomics, pangenomics, epigenomics and mutagenomics. However, because of the complex biological regulation network, single omics usually fail to explain the specific biological phenomena. In recent years, reports of integrated multi-omics studies of medicinal plants have increased. Until now, there have few assessments of recent developments and upcoming trends in omics studies of medicinal plants. We highlight recent developments in omics research of medicinal plants, summarise the typical bioinformatics resources available for analysing omics datasets, and discuss related future directions and challenges. This information facilitates further studies of medicinal plants, refinement of current approaches and leads to new ideas.


Assuntos
Plantas Medicinais , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Multiômica , Genômica , Proteômica , Biologia Computacional , Metabolômica
4.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37798251

RESUMO

Natural products have successfully treated several diseases using a multi-component, multi-target mechanism. However, a precise mechanism of action (MOA) has not been identified. Systems pharmacology methods have been used to overcome these challenges. However, there is a limitation as those similar mechanisms of similar components cannot be identified. In this study, comparisons of physicochemical descriptors, molecular docking analysis and RNA-seq analysis were performed to compare the MOA of similar compounds and to confirm the changes observed when similar compounds were mixed and used. Various analyses have confirmed that compounds with similar structures share similar MOA. We propose an advanced method for in silico experiments in herbal medicine research based on the results. Our study has three novel findings. First, an advanced network pharmacology research method was suggested by partially presenting a solution to the difficulty in identifying multi-component mechanisms. Second, a new natural product analysis method was proposed using large-scale molecular docking analysis. Finally, various biological data and analysis methods were used, such as in silico system pharmacology, docking analysis and drug response RNA-seq. The results of this study are meaningful in that they suggest an analysis strategy that can improve existing systems pharmacology research analysis methods by showing that natural product-derived compounds with the same scaffold have the same mechanism.


Assuntos
Produtos Biológicos , Medicamentos de Ervas Chinesas , Plantas Medicinais , Simulação de Acoplamento Molecular , Transcriptoma , Produtos Biológicos/farmacologia , Extratos Vegetais , Medicina Tradicional Chinesa
5.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37816138

RESUMO

Immune evasion and metabolism reprogramming have been regarded as two vital hallmarks of the mechanism of carcinogenesis. Thus, targeting the immune microenvironment and the reprogrammed metabolic processes will aid in developing novel anti-cancer drugs. In recent decades, herbal medicine has been widely utilized to treat cancer through the modulation of the immune microenvironment and reprogrammed metabolic processes. However, labor-based herbal ingredient screening is time consuming, laborious and costly. Luckily, some computational approaches have been proposed to screen candidates for drug discovery rapidly. Yet, it has been challenging to develop methods to screen drug candidates exclusively targeting specific pathways, especially for herbal ingredients which exert anti-cancer effects by multiple targets, multiple pathways and synergistic ways. Meanwhile, currently employed approaches cannot quantify the contribution of the specific pathway to the overall curative effect of herbal ingredients. Hence, to address this problem, this study proposes a new computational framework to infer the contribution of the immune microenvironment and metabolic reprogramming (COIMMR) in herbal ingredients against human cancer and specifically screen herbal ingredients targeting the immune microenvironment and metabolic reprogramming. Finally, COIMMR was applied to identify isoliquiritigenin that specifically regulates the T cells in stomach adenocarcinoma and cephaelin hydrochloride that specifically targets metabolic reprogramming in low-grade glioma. The in silico results were further verified using in vitro experiments. Taken together, our approach opens new possibilities for repositioning drugs targeting immune and metabolic dysfunction in human cancer and provides new insights for drug development in other diseases. COIMMR is available at https://github.com/LYN2323/COIMMR.


Assuntos
Antineoplásicos , Neoplasias , Plantas Medicinais , Humanos , Neoplasias/metabolismo , Antineoplásicos/uso terapêutico , Linfócitos T , Medicina Herbária , Microambiente Tumoral
6.
Nat Chem Biol ; 19(8): 1031-1041, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37188960

RESUMO

Advances in omics technologies now permit the generation of highly contiguous genome assemblies, detection of transcripts and metabolites at the level of single cells and high-resolution determination of gene regulatory features. Here, using a complementary, multi-omics approach, we interrogated the monoterpene indole alkaloid (MIA) biosynthetic pathway in Catharanthus roseus, a source of leading anticancer drugs. We identified clusters of genes involved in MIA biosynthesis on the eight C. roseus chromosomes and extensive gene duplication of MIA pathway genes. Clustering was not limited to the linear genome, and through chromatin interaction data, MIA pathway genes were present within the same topologically associated domain, permitting the identification of a secologanin transporter. Single-cell RNA-sequencing revealed sequential cell-type-specific partitioning of the leaf MIA biosynthetic pathway that, when coupled with a single-cell metabolomics approach, permitted the identification of a reductase that yields the bis-indole alkaloid anhydrovinblastine. We also revealed cell-type-specific expression in the root MIA pathway.


Assuntos
Antineoplásicos , Catharanthus , Plantas Medicinais , Catharanthus/genética , Plantas Medicinais/metabolismo , Multiômica , Alcaloides Indólicos/metabolismo , Antineoplásicos/metabolismo , Monoterpenos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Methods ; 231: 61-69, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39293728

RESUMO

Arabidopsis thaliana synthesizes various medicinal compounds, and serves as a model plant for medicinal plant research. Single-cell transcriptomics technologies are essential for understanding the developmental trajectory of plant roots, facilitating the analysis of synthesis and accumulation patterns of medicinal compounds in different cell subpopulations. Although methods for interpreting single-cell transcriptomics data are rapidly advancing in Arabidopsis, challenges remain in precisely annotating cell identity due to the lack of marker genes for certain cell types. In this work, we trained a machine learning system, AtML, using sequencing datasets from six cell subpopulations, comprising a total of 6000 cells, to predict Arabidopsis root cell stages and identify biomarkers through complete model interpretability. Performance testing using an external dataset revealed that AtML achieved 96.50% accuracy and 96.51% recall. Through the interpretability provided by AtML, our model identified 160 important marker genes, contributing to the understanding of cell type annotations. In conclusion, we trained AtML to efficiently identify Arabidopsis root cell stages, providing a new tool for elucidating the mechanisms of medicinal compound accumulation in Arabidopsis roots.


Assuntos
Arabidopsis , Aprendizado de Máquina , Raízes de Plantas , Plantas Medicinais , Arabidopsis/genética , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Análise de Célula Única/métodos , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética
10.
Med Res Rev ; 44(2): 539-567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37661373

RESUMO

Over the past decade, colorectal cancer has reported a higher incidence in younger adults and a lower mortality rate. Recently, the influence of the intestinal flora in the initiation, progression, and treatment of colorectal cancer has been extensively studied, as well as their positive therapeutic impact on inflammation and the cancer microenvironment. Historically, traditional Chinese medicine (TCM) has been widely used in the treatment of colorectal cancer via promoted cancer cell apoptosis, inhibited cancer metastasis, and reduced drug resistance and side effects. The present research is more on the effect of either herbal medicine or intestinal flora on colorectal cancer. The interactions between TCM and intestinal flora are bidirectional and the combined impacts of TCM and gut microbiota in the treatment of colon cancer should not be neglected. Therefore, this review discusses the role of intestinal bacteria in the progression and treatment of colorectal cancer by inhibiting carcinogenesis, participating in therapy, and assisting in healing. Then the complex anticolon cancer effects of different kinds of TCM monomers, TCM drug pairs, and traditional Chinese prescriptions embodied in apoptosis, metastasis, immune suppression, and drug resistance are summarized separately. In addition, the interaction between TCM and intestinal flora and the combined effect on cancer treatment were analyzed. This review provides a mechanistic reference for the application of TCM and intestinal flora in the clinical treatment of colorectal cancer and paves the way for the combined development and application of microbiome and TCM.


Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Plantas Medicinais , Adulto , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Microambiente Tumoral
11.
Plant J ; 113(6): 1146-1159, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36575579

RESUMO

Marsdenia tenacissima is a medicinal plant widely distributed in the calcium-rich karst regions of southwest China. However, the lack of a reference genome has hampered the implementation of molecular techniques in its breeding, pharmacology and domestication. We generated the chromosome-level genome assembly in Apocynaceae using combined SMRT sequencing and Hi-C. The genome length was 381.76 Mb, with 98.9% of it found on 11 chromosomes. The genome contained 222.63 Mb of repetitive sequences and 21 899 predicted gene models, with a contig N50 of 6.57 Mb. Phylogenetic analysis revealed that M. tenacissima diverged from Calotropis gigantea at least 13.43 million years ago. Comparative genomics showed that M. tenacissima underwent ancient shared whole-genome duplication. This event, together with tandem duplication, contributed to 70.71% of gene-family expansion. Both pseudogene analysis and selective pressure calculations suggested calcium-related adaptive evolution in the M. tenacissima genome. Calcium-induced differentially expressed genes (DEGs) were mainly enriched in cell-wall-related processes. Domains (e.g. Fasciclin and Amb_all) and cis-elements (e.g. MYB and MYC) frequently occurred in the coding and promoter regions of cell-wall DEGs, respectively, and the expression levels of these genes correlated significantly with those of calcium-signal-related transcription factors. Moreover, calcium addition increased tenacissoside I, G and H contents. The availability of this high-quality genome provides valuable genomic information for genetic breeding and molecular design, and lends insights into the calcium adaptation of M. tenacissima in karst areas.


Assuntos
Marsdenia , Plantas Medicinais , Cálcio , Marsdenia/genética , Filogenia , Melhoramento Vegetal
12.
BMC Genomics ; 25(1): 39, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191291

RESUMO

BACKGROUND: Scutellaria baicalensis Georgi has been extensively used as a medicinal herb in China for over 2000 years. They may be intentionally or inadvertently substituted or blended with comparable species in the local market, threatening clinical medication safety. Molecular markers are effective tools to prevent misidentification and eliminate doping and falsification among Scutellaria plants. This study screened four highly variable regions to identify Scutellaria and its adulterants. In addition, a phylogenetic analysis was performed using the complete cp genome combined with published Scutellaria species samples. Moreover, a comparative analysis of the cp genomes was conducted to investigate the cp genome evolution of S. baicalensis. RESULTS: The complete cp genome of five species of Scutellaria was sequenced for the first time, and four previously published Scutellaria species were re-sequenced. They all exhibited a conserved quadripartite structure in their cp genomes, including two distinct regions, namely a small and large single copy region, respectively, and two inverted repeats encompassing the majority of ribosomal RNA genes. Furthermore, the nine species exhibited high conservation from aspects of the genome structure, codon usage, repeat sequences, and gene content. Four highly variable regions (matK-rps16, ndhC-trnV-UAC, psbE-petL, and rps16-trnQ-UUG) may function as potential molecular markers for differentiating S. baicalensis from its adulterants. Additionally, the monophyly of Scutellaria was ascertained and could be reclassified into two subgenera, subgenus Anaspis and subgenus Scutellaria, as evidenced by the phylogenetic analyses on sequences of cp genome and shared protein-coding sequences. According to the molecular clock analysis, it has been inferred that the divergence of Scutellaria occurred at approximately 4.0 Mya during the Pliocene Epoch. CONCLUSION: Our study provides an invaluable theoretical basis for further Scutellaria species identification, phylogenetics, and evolution analysis.


Assuntos
Genoma de Cloroplastos , Plantas Medicinais , Plantas Medicinais/genética , Scutellaria baicalensis/genética , Filogenia , Mapeamento Cromossômico
13.
BMC Genomics ; 25(1): 773, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118028

RESUMO

BACKGROUND: Fritillaria ussuriensis is an endangered medicinal plant known for its notable therapeutic properties. Unfortunately, its population has drastically declined due to the destruction of forest habitats. Thus, effectively protecting F. ussuriensis from extinction poses a significant challenge. A profound understanding of its genetic foundation is crucial. To date, research on the complete mitochondrial genome of F. ussuriensis has not yet been reported. RESULTS: The complete mitochondrial genome of F. ussuriensis was sequenced and assembled by integrating PacBio and Illumina sequencing technologies, revealing 13 circular chromosomes totaling 737,569 bp with an average GC content of 45.41%. A total of 55 genes were annotated in this mitogenome, including 2 rRNA genes, 12 tRNA genes, and 41 PCGs. The mitochondrial genome of F. ussuriensis contained 192 SSRs and 4,027 dispersed repeats. In the PCGs of F. ussuriensis mitogenome, 90.00% of the RSCU values exceeding 1 exhibited a preference for A-ended or U-ended codons. In addition, 505 RNA editing sites were predicted across these PCGs. Selective pressure analysis suggested negative selection on most PCGs to preserve mitochondrial functionality, as the notable exception of the gene nad3 showed positive selection. Comparison between the mitochondrial and chloroplast genomes of F. ussuriensis revealed 20 homologous fragments totaling 8,954 bp. Nucleotide diversity analysis revealed the variation among genes, and gene atp9 was the most notable. Despite the conservation of GC content, mitogenome sizes varied significantly among six closely related species, and colinear analysis confirmed the lack of conservation in their genomic structures. Phylogenetic analysis indicated a close relationship between F. ussuriensis and Lilium tsingtauense. CONCLUSIONS: In this study, we sequenced and annotated the mitogenome of F. ussuriensis and compared it with the mitogenomes of other closely related species. In addition to genomic features and evolutionary position, this study also provides valuable genomic resources to further understand and utilize this medicinal plant.


Assuntos
Espécies em Perigo de Extinção , Fritillaria , Genoma Mitocondrial , Filogenia , Plantas Medicinais , Edição de RNA , Fritillaria/genética , Plantas Medicinais/genética , Composição de Bases , RNA de Transferência/genética , Anotação de Sequência Molecular
14.
Nat Prod Rep ; 41(10): 1471-1542, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-38787644

RESUMO

Covering: up to the mid of 2023Plants secrete defense resins rich in small-molecule natural products under abiotic and biotic stresses. This comprehensive review encompasses the literature published up to mid-2023 on medicinal plant resin natural products from six main contributor genera, featuring 275 citations that refer to 1115 structurally diverse compounds. The scope of this review extends to include essential information such as the racemic nature of metabolites found in different species of plant resins, source of resins, and revised structures. Additionally, we carefully analyze the reported biological activities of resins, organizing them based on the their structures. The findings offer important insights into the relationship between their structure and activity. Furthermore, this detailed examination can be valuable for researchers and scientists in the field of medicinal plant resin natural products and will promote continued exploration and progress in this area.


Assuntos
Produtos Biológicos , Plantas Medicinais , Resinas Vegetais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Plantas Medicinais/química , Resinas Vegetais/química , Estrutura Molecular
15.
Nat Prod Rep ; 41(9): 1368-1402, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809164

RESUMO

Covering: 1976 to December 2023Chloranthaceae is comprised of four extant genera (Chloranthus, Sarcandra, Hedyosmum, and Ascarina), totaling about 80 species, many of which have been widely used as herbal medicines for diverse medical purposes. Chloranthaceae plants represent a rich source of structurally interesting and diverse secondary metabolites, with sesquiterpenoids and diterpenoids being the predominant structural types. Lindenane sesquiterpenoids and their oligomers, chemotaxonomical markers of the family Chloranthaceae, have shown a wide spectrum of bioactivities, attracting significant attention from organic chemists and pharmacologists. Recent achievements also demonstrated the research value of two unique structural types in this plant family, sesquiterpenoid-monoterpenoid heterodimers and meroterpenoids. This review systematically summarizes 682 structurally characterized terpenoids from 22 Chloranthaceae plants and their key biological activities as well as the chemical synthesis of selected terpenoids.


Assuntos
Terpenos , Terpenos/química , Terpenos/farmacologia , Estrutura Molecular , Magnoliopsida/química , Plantas Medicinais/química , Humanos
16.
Nat Prod Rep ; 41(10): 1604-1621, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39108221

RESUMO

Covering: up to July 2023Botanical natural medicinal products and dietary supplements are utilized globally for their positive impacts on health and wellness. However, the effectiveness and safety of botanical products can be compromised by unintentional or intentional adulteration. The presence of adulterated botanical ingredients in the global market has been documented in the published literature but a key question, namely what the extent of adulteration is, remains to be answered. This review aims to estimate the prevalence of adulteration in preparations made from black cohosh rhizome, echinacea root or herb, elder berry, ginkgo leaf, and turmeric root/rhizome. According to the information provided in the 78 publications retrieved for this paper, 818 of 2995 samples were reported to be adulterated and/or mislabeled. Ginkgo leaf samples (n = 533) had the highest adulteration rate with 56.7%, followed by black cohosh rhizome (n = 322) samples with 42.2%, echinacea root/herb (n = 200) with 28.5%, elder berry (n = 695) with 17.1%, and turmeric root/rhizome (n = 1247) with 16.5%. Products sold as licensed or registered herbal medicines were found to have a lower risk of adulteration compared to products sold as dietary/food supplements. The data show that the adulteration rate substantially differs from one ingredient to the other. Due to the significant limitations of the available data upon which the estimated extent of adulteration is based, and the rapidly changing botanical dietary supplement market, conclusions from the five herbs examined in this publication cannot be applied to other botanicals traded in the global market. However, the data clearly show that a substantial portion of the botanical dietary supplements do not contain what is claimed on their labels.


Assuntos
Curcuma , Contaminação de Medicamentos , Echinacea , Ginkgo biloba , Curcuma/química , Echinacea/química , Ginkgo biloba/química , Cimicifuga/química , Suplementos Nutricionais/análise , Plantas Medicinais/química , Extratos Vegetais/análise , Extratos Vegetais/química , Rizoma/química , Raízes de Plantas/química
17.
Trends Genet ; 37(9): 776-779, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34016451

RESUMO

Next-generation sequencing (NGS) has identified disease hallmarks and catalogued a vast reservoir of genetic information from humans and other species. Precise nucleotide-interrogation properties of clustered regularly interspaced short palindromic repeats (CRISPR) proteins have been harnessed to rapidly identify DNA-RNA signatures for diverse applications, bypassing the cost and turnaround times associated with diagnostic NGS.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas Genéticas , Técnicas de Diagnóstico Molecular/métodos , Biomarcadores Tumorais/genética , Proteínas Associadas a CRISPR/genética , DNA , Técnicas Genéticas/economia , Humanos , Plantas Medicinais/genética , RNA , Tuberculose/diagnóstico , Tuberculose/microbiologia
18.
Funct Integr Genomics ; 24(6): 207, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39496976

RESUMO

Plants acts as living chemical factories that may create a large variety of secondary metabolites, most of which are used in pharmaceutical products. The production of these secondary metabolites is often much lower. Moreover, the primary constraint after discovering potential metabolites is the capacity to manufacture sufficiently for use in industrial and therapeutic contexts. The development of omics technology has brought revolutionary discoveries in various scientific fields, including transcriptomics, metabolomics, and genome sequencing. The metabolic pathways leading to the utilization of new secondary metabolites in the pharmaceutical industry can be identified with the use of these technologies. Genome editing (GEd) is a versatile technology primarily used for site-directed DNA insertions, deletions, replacements, base editing, and activation/repression at the targeted locus. Utilizing GEd techniques such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (CRISPR-associated protein 9), metabolic pathways engineered to synthesize bioactive metabolites optimally. This article will briefly discuss omics and CRISPR/Cas9-based methods to improve secondary metabolite production in medicinal plants.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Plantas Medicinais , Edição de Genes/métodos , Plantas Medicinais/metabolismo , Plantas Medicinais/genética , Metabolismo Secundário/genética , Engenharia Metabólica/métodos , Metabolômica/métodos , Genoma de Planta , Multiômica
19.
BMC Biotechnol ; 24(1): 20, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637734

RESUMO

BACKGROUND: Obtaining high-quality chloroplast genome sequences requires chloroplast DNA (cpDNA) samples that meet the sequencing requirements. The quality of extracted cpDNA directly impacts the efficiency and accuracy of sequencing analysis. Currently, there are no reported methods for extracting cpDNA from Erigeron breviscapus. Therefore, we developed a suitable method for extracting cpDNA from E. breviscapus and further verified its applicability to other medicinal plants. RESULTS: We conducted a comparative analysis of chloroplast isolation and cpDNA extraction using modified high-salt low-pH method, the high-salt method, and the NaOH low-salt method, respectively. Subsequently, the number of cpDNA copies relative to the nuclear DNA (nDNA ) was quantified via qPCR. As anticipated, chloroplasts isolated from E. breviscapus using the modified high-salt low-pH method exhibited intact structures with minimal cell debris. Moreover, the concentration, purity, and quality of E. breviscapus cpDNA extracted through this method surpassed those obtained from the other two methods. Furthermore, qPCR analysis confirmed that the modified high-salt low-pH method effectively minimized nDNA contamination in the extracted cpDNA. We then applied the developed modified high-salt low-pH method to other medicinal plant species, including Mentha haplocalyx, Taraxacum mongolicum, and Portulaca oleracea. The resultant effect on chloroplast isolation and cpDNA extraction further validated the generalizability and efficacy of this method across different plant species. CONCLUSIONS: The modified high-salt low-pH method represents a reliable approach for obtaining high-quality cpDNA from E. breviscapus. Its universal applicability establishes a solid foundation for chloroplast genome sequencing and analysis of this species. Moreover, it serves as a benchmark for developing similar methods to extract chloroplast genomes from other medicinal plants.


Assuntos
Genoma de Cloroplastos , Plantas Medicinais , DNA de Cloroplastos/genética , Plantas Medicinais/genética , Cloroplastos/genética , Mapeamento Cromossômico , Filogenia
20.
BMC Biotechnol ; 24(1): 5, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263231

RESUMO

Recently there have been a variety of methods to synthesize silver nanoparticles, among which the biosynthesis method is more noticeable due to features like being eco-friendly, simple, and cost-efficient. The present study aims for the green synthesis of silver nanoparticles from the extract of the three plants A. wilhelmsi, M. chamomilla, and C. longa; moreover, it pledges to measure the antibacterial activity against some variants causing a skin rash. The morphology and size of the synthesized silver nanoparticles were evaluated by UV.vis, XRD, SEM, and FTIR analyses. Then results showed a color alteration from light yellow to dark brown and the formation of silver nanoparticles. The absorption peak with the wavelength of approximately 450 nm resulting from the Spectrophotometry analysis confirmed the synthesis of silver nanoparticles. The presence of strong and wide peaks in FTIR indicated the presence of OH groups. The SEM results showed that most synthesized nanoparticles had a spherical angular structure and their size was about 10 to 20 nm. The highest inhibition power was demonstrated by silver nanoparticles synthesized from the extract combined from all three species against Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis (23 mm) which had a performance far more powerful than the extract. Thus, it can be understood that the nanoparticles synthesized from these three species can act as potential environment-friendly alternatives to inhibit some variations causing skin disorders; an issue that calls for further clinical studies.


Assuntos
Nanopartículas Metálicas , Plantas Medicinais , Prata , Antibacterianos , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA