Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(9): e3002294, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37769035

RESUMO

In the formation of species, adaptation by natural selection generates distinct combinations of traits that function well together. The maintenance of adaptive trait combinations in the face of gene flow depends on the strength and nature of selection acting on the underlying genetic loci. Floral pollination syndromes exemplify the evolution of trait combinations adaptive for particular pollinators. The North American wildflower genus Penstemon displays remarkable floral syndrome convergence, with at least 20 separate lineages that have evolved from ancestral bee pollination syndrome (wide blue-purple flowers that present a landing platform for bees and small amounts of nectar) to hummingbird pollination syndrome (bright red narrowly tubular flowers offering copious nectar). Related taxa that differ in floral syndrome offer an attractive opportunity to examine the genomic basis of complex trait divergence. In this study, we characterized genomic divergence among 229 individuals from a Penstemon species complex that includes both bee and hummingbird floral syndromes. Field plants are easily classified into species based on phenotypic differences and hybrids displaying intermediate floral syndromes are rare. Despite unambiguous phenotypic differences, genome-wide differentiation between species is minimal. Hummingbird-adapted populations are more genetically similar to nearby bee-adapted populations than to geographically distant hummingbird-adapted populations, in terms of genome-wide dXY. However, a small number of genetic loci are strongly differentiated between species. These approximately 20 "species-diagnostic loci," which appear to have nearly fixed differences between pollination syndromes, are sprinkled throughout the genome in high recombination regions. Several map closely to previously established floral trait quantitative trait loci (QTLs). The striking difference between the diagnostic loci and the genome as whole suggests strong selection to maintain distinct combinations of traits, but with sufficient gene flow to homogenize the genomic background. A surprisingly small number of alleles confer phenotypic differences that form the basis of species identity in this species complex.


Assuntos
Penstemon , Polinização , Humanos , Abelhas/genética , Animais , Polinização/genética , Néctar de Plantas , Penstemon/genética , Flores/genética , Locos de Características Quantitativas/genética
2.
Proc Natl Acad Sci U S A ; 120(2): e2214492120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595698

RESUMO

Reproductive systems of flowering plants are evolutionarily fluid, with mating patterns changing in response to shifts in abiotic conditions, pollination systems, and population characteristics. Changes in mating should be particularly evident in species with sexual polymorphisms that become ecologically destabilized, promoting transitions to alternative reproductive systems. Here, we decompose female mating portfolios (incidence of selfing, outcross mate number, and intermorph mating) in eight populations of Primula oreodoxa, a self-compatible insect-pollinated herb. This species is ancestrally distylous, with populations subdivided into two floral morphs that usually mate with each other (disassortative mating). Stages in the breakdown of polymorphism also occur, including "mixed" populations of distylous and homostylous (self-pollinating) morphs and purely homostylous populations. Population morph ratios vary with elevation in association with differences in pollinator availability, providing an unusual opportunity to investigate changes in mating patterns accompanying transitions in reproductive systems. Unexpectedly, individuals mostly outcrossed randomly, with substantial disassortative mating in at most two distylous populations. As predicted, mixed populations had higher selfing rates than distylous populations, within mixed populations, homostyles selfed almost twice as much as the distylous morphs, and homostylous populations exhibited the highest selfing rates. Populations with homostyles outcrossed with fewer mates and mate number varied negatively with population selfing rates. These differences indicate maintenance of distyly at low elevation, transition to monomorphic selfing at high elevation, and uncertain, possibly variable fates at intermediate elevation. By quantifying the earliest changes in mating that initiate reproductive transitions, our study highlights the key role of mating in promoting evolutionary divergence.


Assuntos
Flores , Reprodução , Humanos , Flores/genética , Reprodução/genética , Polinização/genética , Polimorfismo Genético , Evolução Biológica
3.
Proc Natl Acad Sci U S A ; 120(28): e2222035120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399402

RESUMO

Studies investigating the evolution of flowering plants have long focused on isolating mechanisms such as pollinator specificity. Some recent studies have proposed a role for introgressive hybridization between species, recognizing that isolating processes such as pollinator specialization may not be complete barriers to hybridization. Occasional hybridization may therefore lead to distinct yet reproductively connected lineages. We investigate the balance between introgression and reproductive isolation in a diverse clade using a densely sampled phylogenomic study of fig trees (Ficus, Moraceae). Codiversification with specialized pollinating wasps (Agaonidae) is recognized as a major engine of fig diversity, leading to about 850 species. Nevertheless, some studies have focused on the importance of hybridization in Ficus, highlighting the consequences of pollinator sharing. Here, we employ dense taxon sampling (520 species) throughout Moraceae and 1,751 loci to investigate phylogenetic relationships and the prevalence of introgression among species throughout the history of Ficus. We present a well-resolved phylogenomic backbone for Ficus, providing a solid foundation for an updated classification. Our results paint a picture of phylogenetically stable evolution within lineages punctuated by occasional local introgression events likely mediated by local pollinator sharing, illustrated by clear cases of cytoplasmic introgression that have been nearly drowned out of the nuclear genome through subsequent lineage fidelity. The phylogenetic history of figs thus highlights that while hybridization is an important process in plant evolution, the mere ability of species to hybridize locally does not necessarily translate into ongoing introgression between distant lineages, particularly in the presence of obligate plant-pollinator relationships.


Assuntos
Ficus , Vespas , Animais , Ficus/genética , Filogenia , Genômica , Isolamento Reprodutivo , Vespas/genética , Polinização/genética
4.
Plant J ; 113(5): 1021-1034, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36602036

RESUMO

Saururus chinensis, an herbaceous magnoliid without perianth, represents a clade of early-diverging angiosperms that have gone through woodiness-herbaceousness transition and pollination obstacles: the characteristic white leaves underneath inflorescence during flowering time are considered a substitute for perianth to attract insect pollinators. Here, using the newly sequenced S. chinensis genome, we revisited the phylogenetic position of magnoliids within mesangiosperms, and recovered a sister relationship for magnoliids and Chloranthales. By considering differentially expressed genes, we identified candidate genes that are involved in the morphogenesis of the white leaves in S. chinensis. Among those genes, we verified - in a transgenic experiment with Arabidopsis - that increasing the expression of the "pseudo-etiolation in light" gene (ScPEL) can inhibit the biosynthesis of chlorophyll. ScPEL is thus likely responsible for the switches between green and white leaves, suggesting that changes in gene expression may underlie the evolution of pollination strategies. Despite being an herbaceous plant, S. chinensis still has vascular cambium and maintains the potential for secondary growth as a woody plant, because the necessary machinery, i.e., the entire gene set involved in lignin biosynthesis, is well preserved. However, similar expression levels of two key genes (CCR and CAD) between the stem and other tissues in the lignin biosynthesis pathway are possibly associated with the herbaceous nature of S. chinensis. In conclusion, the S. chinensis genome provides valuable insights into the adaptive evolution of pollination in Saururaceae and reveals a possible mechanism for the evolution of herbaceousness in magnoliids.


Assuntos
Arabidopsis , Magnoliopsida , Saururaceae , Filogenia , Polinização/genética , Lignina , Magnoliopsida/genética
5.
BMC Plant Biol ; 24(1): 102, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331761

RESUMO

Polyphenol oxidases (PPOs) are type-3 copper enzymes and are involved in many biological processes. However, the potential functions of PPOs in pollination are not fully understood. In this work, we have screened 13 PPO members in Nicotiana. tabacum (named NtPPO1-13, NtPPOs) to explore their characteristics and functions in pollination. The results show that NtPPOs are closely related to PPOs in Solanaceae and share conserved domains except NtPPO4. Generally, NtPPOs are diversely expressed in different tissues and are distributed in pistil and male gametes. Specifically, NtPPO9 and NtPPO10 are highly expressed in the pistil and mature anther. In addition, the expression levels and enzyme activities of NtPPOs are increased after N. tabacum self-pollination. Knockdown of NtPPOs would affect pollen growth after pollination, and the purines and flavonoid compounds are accumulated in self-pollinated pistil. Altogether, our findings demonstrate that NtPPOs potentially play a role in the pollen tube growth after pollination through purines and flavonoid compounds, and will provide new insights into the role of PPOs in plant reproduction.


Assuntos
Nicotiana , Polinização , Nicotiana/genética , Polinização/genética , Tubo Polínico , Flores , Flavonoides/metabolismo , Purinas/metabolismo
6.
New Phytol ; 241(1): 59-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37853523

RESUMO

The evolutionary switch to hummingbird pollination exemplifies complex adaptation, requiring evolutionary change in multiple component traits. Despite this complexity, diverse lineages have converged on hummingbird-adapted flowers on a relatively short evolutionary timescale. Here, I review how features of the genetic basis of adaptation contribute to this remarkable evolutionary lability. Large-effect substitutions, large mutational targets for adaptation, adaptive introgression, and concentrated architecture all contribute to the origin and maintenance of hummingbird-adapted flowers. The genetic features of adaptation are likely shaped by the ecological and geographic context of the switch to hummingbird pollination, with implications for future evolutionary trajectories.


Assuntos
Evolução Biológica , Polinização , Animais , Polinização/genética , Flores/genética , Fenótipo , Aves
7.
New Phytol ; 243(3): 1220-1230, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853408

RESUMO

Shifts in pollinator occurrence and their pollen transport effectiveness drive the evolution of mating systems in flowering plants. Understanding the genomic basis of these changes is essential for predicting the persistence of a species under environmental changes. We investigated the genomic changes in Brassica rapa over nine generations of pollination by hoverflies associated with rapid morphological evolution toward the selfing syndrome. We combined a genotyping-by-sequencing (GBS) approach with a genome-wide association study (GWAS) to identify candidate genes, and assessed their functional role in the observed morphological changes by studying mutations of orthologous genes in the model plant Arabidopsis thaliana. We found 31 candidate genes involved in a wide range of functions from DNA/RNA binding to transport. Our functional assessment of orthologous genes in A. thaliana revealed that two of the identified genes in B. rapa are involved in regulating the size of floral organs. We found a protein kinase superfamily protein involved in petal width, an important trait in plant attractiveness to pollinators. Moreover, we found a histone lysine methyltransferase (HKMT) associated with stamen length. Altogether, our study shows that hoverfly pollination leads to rapid evolution toward the selfing syndrome mediated by polygenic changes.


Assuntos
Evolução Biológica , Brassica rapa , Genes de Plantas , Polinização , Polinização/genética , Brassica rapa/genética , Brassica rapa/fisiologia , Animais , Estudo de Associação Genômica Ampla , Autofertilização/genética , Flores/genética , Flores/fisiologia , Flores/anatomia & histologia , Reprodução/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Mutação/genética , Dípteros/genética , Dípteros/fisiologia , Fenótipo , Pólen/genética , Pólen/fisiologia
8.
Mol Ecol ; 33(6): e17285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288563

RESUMO

Understanding how spatial patterns of mating and gene flow respond to habitat loss and geographical isolation is a crucial aspect of forest fragmentation genetics. Naturally fragmented riparian tree populations exhibit unique characteristics that significantly influence these patterns. In this study, we investigate mating patterns, pollen-mediated gene flow, and genetic diversity in relict populations of Frangula alnus in southern Spain by testing specific hypotheses related to the riparian habitat. We employ a novel approach that combines paternity analysis, particularly suited for small and isolated populations, with complex network theory and Bayesian models to predict mating likelihood among tree pairs. Our findings reveal a prevalence of short-distance pollination, resulting in spatially driven local mating clusters with a distinct subset of trees being highly connected in the mating network. Additionally, we observe numerous pollination events over distances of hundreds of metres and considerable pollen immigration. Local neighbourhood density is the primary factor influencing within-population mating patterns and pollen dispersal; moreover, mating network properties reflect the population's size and spatial configuration. Conversely, among-population pollen dispersal is mainly determined by tree size, which influences floral display. Our results do not support a major role of directional pollen dispersal in longitudinal trends of genetic diversity. We provide evidence that long-term fragmented tree populations persist in unique environments that shape mating patterns and impose constraints to pollen-mediated gene flow. Nevertheless, even seemingly strongly isolated populations can maintain functional connectivity over extended periods, especially when animal-mediated mating networks promote genetic diversity, as in this riparian tree species.


Assuntos
Genética Populacional , Repetições de Microssatélites , Animais , Teorema de Bayes , Repetições de Microssatélites/genética , Reprodução/genética , Polinização/genética , Fluxo Gênico , Variação Genética/genética
9.
Mol Ecol ; 33(11): e17354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656619

RESUMO

Effective dispersal among plant populations is dependent on vector behaviour, landscape features and availability of adequate habitats. To capture landscape feature effects on dispersal, studies must be conducted at scales reflecting single-generation dispersal events (mesoscale). Many studies are conducted at large scales where genetic differentiation is due to dispersal occurring over multiple generations, making it difficult to interpret the effects of specific landscape features on vector behaviour. Genetic structure at the mesoscale may be determined by ecological and evolutionary processes, such as the consequences of vector behaviour on patterns of gene flow. We used chloroplast haplotypes and nuclear genome SNP surveys to identify landscape features influencing seed and pollen dispersal at a mesoscale within the Rogue River Valley in southern Oregon. We evaluated biotic and abiotic vector behaviour by contrasting two annual species with differing dispersal mechanisms; Achyrachaena mollis (Asteraceae) is a self-pollinating and anemochoric species, and Plectritis congesta (Caprifoliaceae) is biotically pollinated with barochoric seeds. Using landscape genetics methods, we identified features of the study region that conduct or restrict dispersal. We found chloroplast haplotypes were indicative of historic patterns of gene flow prior to human modification of landscapes. Seed dispersal of A. mollis was best supported by models of isolation by distance, while seed-driven gene flow of P. congesta was determined by the distribution of preserved natural spaces and quality habitat. Nuclear genetic structure was driven by both pollen and seed dispersal, and both species responded to contemporary landscape changes, such as urban and agricultural conversion, and habitat availability.


Assuntos
Fluxo Gênico , Haplótipos , Dispersão de Sementes , Haplótipos/genética , Oregon , Polimorfismo de Nucleotídeo Único/genética , Ecossistema , Genética Populacional , Pradaria , Asteraceae/genética , Dispersão Vegetal , DNA de Cloroplastos/genética , Pólen/genética , Polinização/genética , Humanos
10.
Plant Cell ; 33(10): 3293-3308, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34338777

RESUMO

The degree of stigma exsertion has a major influence on self-pollination efficiency in tomato, and its improvement is essential for raising productivity and for fixing advantageous traits in cultivated tomato. To study the evolution of stigma exsertion degree in tomato, we searched for genes associated with this trait and other aspects of flower morphology, including the lengths of anthers, styles, and ovaries. We performed a genome-wide association on 277 tomato accessions and discovered a novel stigma exsertion gene (SE3.1). We reannotated the structure of the gene, which encodes a C2H2-type zinc finger transcription factor. A mutation of the lead single nucleotide polymorphism creates a premature termination codon in SE3.1 and an inserted stigma in cultivated tomatoes. SE3.1 is essential for the conversion of flush stigmas to inserted stigmas. This conversion has a major impact on the rate of self-fertilization. Intriguingly, we found that both SE3.1 and Style2.1 contribute to the transition from stigma exsertion to insertion during the domestication and improvement of tomato. Style2.1 controls the first step of exserted stigmas to flush stigmas, and SE3.1 controls the second step of flush stigmas to inserted stigmas. We provide molecular details for the two-step process that controls the transition from stigma exsertion to insertion, which is of great agronomic importance in tomato.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Polinização/genética , Solanum lycopersicum/fisiologia , Fatores de Transcrição/genética , Solanum lycopersicum/genética , Mutação , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875589

RESUMO

Wind disperses the pollen and seeds of many plants, but little is known about whether and how it shapes large-scale landscape genetic patterns. We address this question by a synthesis and reanalysis of genetic data from more than 1,900 populations of 97 tree and shrub species around the world, using a newly developed framework for modeling long-term landscape connectivity by wind currents. We show that wind shapes three independent aspects of landscape genetics in plants with wind pollination or seed dispersal: populations linked by stronger winds are more genetically similar, populations linked by directionally imbalanced winds exhibit asymmetric gene flow ratios, and downwind populations have higher genetic diversity. For each of these distinct hypotheses, partial correlations between the respective wind and genetic metrics (controlling for distance and climate) are positive for a significant majority of wind-dispersed or wind-pollinated genetic data sets and increase significantly across functional groups expected to be increasingly influenced by wind. Together, these results indicate that the geography of both wind strength and wind direction play important roles in shaping large-scale genetic patterns across the world's forests. These findings have implications for various aspects of basic plant ecology and evolution, as well as the response of biodiversity to future global change.


Assuntos
Fluxo Gênico/genética , Variação Genética/genética , Árvores/genética , Biodiversidade , Ecossistema , Florestas , Deriva Genética , Genética Populacional , Repetições de Microssatélites/genética , Pólen/genética , Polinização/genética , Dispersão de Sementes/fisiologia , Sementes/genética , Árvores/crescimento & desenvolvimento , Vento
12.
PLoS Genet ; 17(2): e1009095, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617525

RESUMO

Inferences about past processes of adaptation and speciation require a gene-scale and genome-wide understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species). Taxa within Erythranthe, particularly the parapatric and putatively sister species M. lewisii (bee-pollinated) and M. cardinalis (hummingbird-pollinated), have been a model system for investigating the ecological genetics of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a predominant species tree in which M. cardinalis groups with other hummingbird-pollinated taxa (37% of gene trees), rather than being sister to M. lewisii (32% of gene trees). We independently corroborate a single evolution of hummingbird pollination syndrome in Erythranthe by demonstrating functional redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn a textbook case of pollination-syndrome convergence. Strong asymmetries in allele sharing (Patterson's D-statistic and related tests) indicate that gene tree discordance reflects ancient and recent introgression rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of divergence, low-recombination and adaptation-associated regions support the new species tree, while high-recombination regions generate phylogenetic evidence for sister status for M. lewisii and M. cardinalis. Population-level sampling of core taxa also revealed two instances of chloroplast capture, with Sierran M. lewisii and Southern Californian M. parishii each carrying organelle genomes nested within respective sympatric M. cardinalis clades. A recent organellar transfer from M. cardinalis, an outcrosser where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male sterility effects of selfer M. parishii organelles in hybrids with M. lewisii. Overall, our phylogenomic results reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation, suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the face of gene flow. Our findings further underline the challenges, even in reproductively isolated species, in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation.


Assuntos
Flores/anatomia & histologia , Flores/genética , Introgressão Genética , Mimulus/genética , Polinização/genética , Adaptação Fisiológica , Alelos , Animais , Abelhas , Aves , Mapeamento Cromossômico , Evolução Molecular , Fluxo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Filogenia , Infertilidade das Plantas/fisiologia , Recombinação Genética/genética , Isolamento Reprodutivo
13.
BMC Biol ; 21(1): 58, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941631

RESUMO

BACKGROUND: Theory suggests that the genetic architecture of traits under divergent natural selection influences how easily reproductive barriers evolve and are maintained between species. Divergently selected traits with a simple genetic architecture (few loci with major phenotypic effects) should facilitate the establishment and maintenance of reproductive isolation between species that are still connected by some gene flow. While empirical support for this idea appears to be mixed, most studies test the influence of trait architectures on reproductive isolation only indirectly. Petunia plant species are, in part, reproductively isolated by their different pollinators. To investigate the genetic causes and consequences of this ecological isolation, we deciphered the genetic architecture of three floral pollination syndrome traits in naturally occurring hybrids between the widespread Petunia axillaris and the highly endemic and endangered P. exserta. RESULTS: Using population genetics, Bayesian linear mixed modelling and genome-wide association studies, we found that the three pollination syndrome traits vary in genetic architecture. Few genome regions explain a majority of the variation in flavonol content (defining UV floral colour) and strongly predict the trait value in hybrids irrespective of interspecific admixture in the rest of their genomes. In contrast, variation in pistil exsertion and anthocyanin content (defining visible floral colour) is controlled by many genome-wide loci. Opposite to flavonol content, the genome-wide proportion of admixture between the two species predicts trait values in their hybrids. Finally, the genome regions strongly associated with the traits do not show extreme divergence between individuals representing the two species, suggesting that divergent selection on these genome regions is relatively weak within their contact zones. CONCLUSIONS: Among the traits analysed, those with a more complex genetic architecture are best maintained in association with the species upon their secondary contact. We propose that this maintained genotype-phenotype association is a coincidental consequence of the complex genetic architectures of these traits: some of their many underlying small-effect loci are likely to be coincidentally linked with the actual barrier loci keeping these species partially isolated upon secondary contact. Hence, the genetic architecture of a trait seems to matter for the outcome of hybridization not only then when the trait itself is under selection.


Assuntos
Petunia , Petunia/genética , Estudo de Associação Genômica Ampla , Teorema de Bayes , Hibridização Genética , Reprodução , Polinização/genética , Flores/genética
14.
BMC Genomics ; 24(1): 170, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016302

RESUMO

BACKGROUND: The flowering biology of wheat plants favours self-pollination which causes obstacles in wheat hybrid breeding. Wheat flowers can be divided into two groups, the first one is characterized by flowering and pollination within closed flowers (cleistogamy), while the second one possesses the ability to open flowers during processes mentioned above (chasmogamy). The swelling of lodicules is involved in the flowering of cereals and among others their morphology, calcium and potassium content differentiate between cleistogamic and non-cleistogamous flowers. A better understanding of the chasmogamy mechanism can lead to the development of tools for selection of plants with the desired outcrossing rate. To learn more, the sequencing of transcriptomes (RNA-Seq) and Representational Difference Analysis products (RDA-Seq) were performed to investigate the global transcriptomes of wheat lodicules in two highly chasmogamous (HCH, Piko and Poezja) and two low chasmogamous (LCH, Euforia and KWS Dacanto) varieties at two developmental stages-pre-flowering and early flowering. RESULTS: The differentially expressed genes were enriched in five, main pathways: "metabolism", "organismal systems", "genetic information processing", "cellular processes" and "environmental information processing", respectively. Important genes with opposite patterns of regulation between the HCH and LCH lines have been associated with the lodicule development i.e. expression levels of MADS16 and MADS58 genes may be responsible for quantitative differences in chasmogamy level in wheat. CONCLUSIONS: We conclude that the results provide a new insight into lodicules involvement in the wheat flowering process. This study generated important genomic information to support the exploitation of the chasmogamy in wheat hybrid breeding programs.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Reprodução , Polinização/genética , Transcriptoma , Flores
15.
BMC Plant Biol ; 23(1): 383, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553615

RESUMO

BACKGROUND: Mating system is one of the major determinants of intra- and interspecific genetic structure, but may vary within and between plant populations. Our study model included all known populations of Moehringia tommasinii (Caryophyllaceae), a narrow endemic plant inhabiting rock crevices in the northwestern Adriatic, and some populations of co-occurring and widespread M. muscosa, an ecologically divergent relative with an overlapping flowering period. We performed reciprocal crosses within and between taxa and used molecular markers to assess the extent of gene flow within and between populations and taxa. Using coefficient of inbreeding, population size, seed weight, pollen-to-ovule ratio, and flower display size, we also looked for evidence of a selfing syndrome. RESULTS: A surprisingly high variation in mating systems was observed among populations of M. tommasinii. These populations exhibited genetic structuring, with their size positively correlated with both seed weight and pollen production. Although a selfing syndrome could not be confirmed as the majority of selfing resulted from allogamous treatments, the occurrence of selfing was notable. In the presence of M. muscosa, at a site where both species coexist closely, a distinct pattern of fruit production was observed in M. tommasinii following various pollination treatments. Molecular and morphometric data provided evidence of hybridization followed by local extinction at this site. CONCLUSIONS: Population size proved to be the most important factor affecting the mating system in genetically structured populations of M. tommasinii. Lighter seeds and lower pollen production observed in populations with pronounced selfing do not provide enough evidence for the selfing syndrome. Detected gene flow between M. tommasinii and the sympatric M. muscosa suggested weak reproductive barriers between the taxa, which could pose a conservation problems for the former species. Hybridization leading to local extinction may also resulted in floral polymorphism and disruption of mating patterns of M. tommasinii.


Assuntos
Polinização , Reprodução , Densidade Demográfica , Reprodução/genética , Polinização/genética , Endogamia , Genética Populacional , Flores/genética
16.
New Phytol ; 240(3): 1233-1245, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37614102

RESUMO

Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend on microbe abundance and community composition. Filtering by plant traits and deterministic dispersal-mediated processes can affect microbiome assembly, yet their relative contribution to predictable variation in microbiome is poorly understood. We compared the effects of host-plant filtering and dispersal on nectar microbiome presence, abundance, and composition. We inoculated representative bacteria and yeast into 30 plants across four phenotypically distinct cultivars of Epilobium canum. We compared the growth of inoculated communities to openly visited flowers from a subset of the same plants. There was clear evidence of host selection when we inoculated flowers with synthetic communities. However, plants with the highest microbial densities when inoculated did not have the highest microbial densities when openly visited. Instead, plants predictably varied in the presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a role for deterministic dispersal. These findings suggest that host filtering could drive plant microbiome assembly in tissues where species pools are large and dispersal is high. However, deterministic differences in microbial dispersal to hosts may be equally or more important when microbes rely on an animal vector, dispersal is low, or arrival order is important.


Assuntos
Microbiota , Néctar de Plantas , Animais , Polinização/genética , Flores/genética , Plantas/microbiologia , Saccharomyces cerevisiae , Bactérias
17.
Mol Ecol ; 32(21): 5709-5723, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37789741

RESUMO

Insect pollination is fundamental for natural ecosystems and agricultural crops. The bumblebee species Bombus terrestris has become a popular choice for commercial crop pollination worldwide due to its effectiveness and ease of mass rearing. Bumblebee colonies are mass produced for the pollination of more than 20 crops and imported into over 50 countries including countries outside their native ranges, and the risk of invasion by commercial non-native bumblebees is considered an emerging issue for global conservation and biological diversity. Here, we use genome-wide data from seven wild populations close to and far from farms using commercial colonies, as well as commercial populations, to investigate the implications of utilizing commercial bumblebee subspecies in the UK. We find evidence for generally low levels of introgression between commercial and wild bees, with higher admixture proportions in the bees occurring close to farms. We identify genomic regions putatively involved in local and global adaptation, and genes in locally adaptive regions were found to be enriched for functions related to taste receptor activity, oxidoreductase activity, fatty acid and lipid biosynthetic processes. Despite more than 30 years of bumblebee colony importation into the UK, we observe low impact on the genetic integrity of local B. terrestris populations, but we highlight that even limited introgression might negatively affect locally adapted populations.


Assuntos
Ecossistema , Insetos , Abelhas/genética , Animais , Polinização/genética , Biodiversidade
18.
Mol Ecol ; 32(23): 6345-6362, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36086900

RESUMO

Anthropogenic activities are triggering global changes in the environment, causing entire communities of plants, pollinators and their interactions to restructure, and ultimately leading to species declines. To understand the mechanisms behind community shifts and declines, as well as monitoring and managing impacts, a global effort must be made to characterize plant-pollinator communities in detail, across different habitat types, latitudes, elevations, and levels and types of disturbances. Generating data of this scale will only be feasible with rapid, high-throughput methods. Pollen DNA metabarcoding provides advantages in throughput, efficiency and taxonomic resolution over traditional methods, such as microscopic pollen identification and visual observation of plant-pollinator interactions. This makes it ideal for understanding complex ecological networks and their responses to change. Pollen DNA metabarcoding is currently being applied to assess plant-pollinator interactions, survey ecosystem change and model the spatiotemporal distribution of allergenic pollen. Where samples are available from past collections, pollen DNA metabarcoding has been used to compare contemporary and past ecosystems. New avenues of research are possible with the expansion of pollen DNA metabarcoding to intraspecific identification, analysis of DNA in ancient pollen samples, and increased use of museum and herbarium specimens. Ongoing developments in sequencing technologies can accelerate progress towards these goals. Global ecological change is happening rapidly, and we anticipate that high-throughput methods such as pollen DNA metabarcoding are critical for understanding the evolutionary and ecological processes that support biodiversity, and predicting and responding to the impacts of change.


Assuntos
Código de Barras de DNA Taxonômico , Ecossistema , Código de Barras de DNA Taxonômico/métodos , Pólen/genética , Plantas/genética , DNA , Polinização/genética
19.
Mol Ecol ; 32(23): 6377-6393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36065738

RESUMO

Alpine plant-pollinator communities play an important role in the functioning of alpine ecosystems, which are highly threatened by climate change. However, we still have a poor understanding of how environmental factors and spatiotemporal variability shape these communities. Here, we investigate what drives structure and beta diversity in a plant-pollinator metacommunity from the Australian alpine region using two approaches: pollen DNA metabarcoding (MB) and observations. Individual pollinators often carry pollen from multiple plant species, and therefore we expected MB to reveal a more diverse and complex network structure. We used two gene regions (ITS2 and trnL) to identify plant species present in the pollen loads of 154 insect pollinator specimens from three alpine habitats and construct MB networks, and compared them to networks based on observations alone. We compared species and interaction turnover across space for both types of networks, and evaluated their differences for plant phylogenetic diversity and beta diversity. We found significant structural differences between the two types of networks; notably, MB networks were much less specialized but more diverse than observation networks, with MB detecting many cryptic plant species. Both approaches revealed that alpine pollination networks are very generalized, but we estimated a high spatial turnover of plant species (0.79) and interaction rewiring (0.6) as well as high plant phylogenetic diversity (0.68) driven by habitat differences based on the larger diversity of plant species and species interactions detected with MB. Overall, our findings show that habitat and microclimatic heterogeneity drives diversity and fine-scale spatial turnover of alpine plant-pollinator networks.


Assuntos
Código de Barras de DNA Taxonômico , Ecossistema , Animais , Filogenia , Austrália , Pólen/genética , Plantas/genética , Polinização/genética , Flores , Insetos/genética
20.
Plant Physiol ; 188(4): 2073-2084, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35078230

RESUMO

Successful reproduction in the Brassicaceae is mediated by a complex series of interactions between the pollen and the pistil, and some species have an additional layer of regulation with the self-incompatibility trait. While the initial activation of the self-incompatibility pathway by the pollen S-locus protein 11/S locus cysteine-rich protein and the stigma S Receptor Kinase is well characterized, the downstream mechanisms causing self-pollen rejection are still not fully understood. In previous studies, we detected the presence of autophagic bodies with self-incompatible (SI) pollinations in Arabidopsis lyrata and transgenic Arabidopsis thaliana lines, but whether autophagy was essential for self-pollen rejection was unknown. Here, we investigated the requirement of autophagy in this response by crossing mutations in the essential AUTOPHAGY7 (ATG7) and ATG5 genes into two different transgenic SI A. thaliana lines in the Col-0 and C24 accessions. By using these previously characterized transgenic lines that express A. lyrata and Arabidopsis halleri self-incompatibility genes, we demonstrated that disrupting autophagy weakened their SI responses in the stigma. When the atg7 or atg5 mutations were present, an increased number of SI pollen was found to hydrate and form pollen tubes that successfully fertilized the SI pistils. Additionally, we confirmed the presence of GFP-ATG8a-labeled autophagosomes in the stigmatic papillae following SI pollinations. Together, these findings support the requirement of autophagy in the self-incompatibility response and add to the growing understanding of the intracellular mechanisms employed in the transgenic A. thaliana stigmas to reject self-pollen.


Assuntos
Arabidopsis , Arabidopsis/genética , Autofagia/genética , Pólen/metabolismo , Tubo Polínico , Polinização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA