RESUMO
Cardiac maturation represents the last phase of heart development and is characterized by morphofunctional alterations that optimize the heart for efficient pumping. Its understanding provides important insights into cardiac regeneration therapies. Recent evidence implies that adrenergic signals are involved in the regulation of cardiac maturation, but the mechanistic underpinnings involved in this process are poorly understood. Herein, we explored the role of ß-adrenergic receptor (ß-AR) activation in determining structural and functional components of cardiomyocyte maturation. Temporal characterization of tyrosine hydroxylase and norepinephrine levels in the mouse heart revealed that sympathetic innervation develops during the first 3 wk of life, concurrent with the rise in ß-AR expression. To assess the impact of adrenergic inhibition on maturation, we treated mice with propranolol, isolated cardiomyocytes, and evaluated morphofunctional parameters. Propranolol treatment reduced heart weight, cardiomyocyte size, and cellular shortening, while it increased the pool of mononucleated myocytes, resulting in impaired maturation. No changes in t-tubules were observed in cells from propranolol mice. To establish a causal link between ß-AR signaling and cardiomyocyte maturation, mice were subjected to sympathectomy, followed or not by restoration with isoproterenol treatment. Cardiomyocytes from sympathectomyzed mice recapitulated the salient immaturity features of propranolol-treated mice, with the additional loss of t-tubules. Isoproterenol rescued the maturation deficits induced by sympathectomy, except for the t-tubule alterations. Our study identifies the ß-AR stimuli as a maturation promoting signal and implies that this pathway can be modulated to improve cardiac regeneration therapies.NEW & NOTEWORTHY Maturation involves a series of morphofunctional alterations vital to heart development. Its regulatory mechanisms are only now being unveiled. Evidence implies that adrenergic signaling regulates cardiac maturation, but the mechanisms are poorly understood. To address this point, we blocked ß-ARs or performed sympathectomy followed by rescue experiments with isoproterenol in neonatal mice. Our study identifies the ß-AR stimuli as a maturation signal for cardiomyocytes and highlights the importance of this pathway in cardiac regeneration therapies.
Assuntos
Miócitos Cardíacos , Propranolol , Transdução de Sinais , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Camundongos , Propranolol/farmacologia , Receptores Adrenérgicos beta/metabolismo , Camundongos Endogâmicos C57BL , Isoproterenol/farmacologia , Masculino , Coração/efeitos dos fármacos , Células Cultivadas , Agonistas Adrenérgicos beta/farmacologia , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Antagonistas Adrenérgicos beta/farmacologiaRESUMO
Proranolol has long been recommended to prevent variceal bleeding in patients with cirrhosis. However, the mechanisms of propranolol in liver fibrosis have not yet been thoroughly elucidated. Autophagic cell death (ACD) of activated hepatic stellate cells (HSCs) is important in the alleviation of liver fibrosis. Our study aims to assess the mechanisms of propranolol regulating HSC ACD and liver fibrosis. ACD of HSCs was investigated using lentivirus transfection. The molecular mechanism was determined using a PCR profiler array. The role of autophagy-related protein 9b (ATG9b) in HSC ACD was detected using co-immunoprecipitation and co-localization of immunofluorescence. Changes in the signalling pathway were detected by the Phospho Explorer antibody microarray. Propranolol induces ACD and apoptosis in HSCs. ATG9b upregulation was detected in propranolol-treated HSCs. ATG9b upregulation promoted ACD of HSCs and alleviated liver fibrosis in vivo. ATG9b enhanced the P62 recruitment to ATG5-ATG12-LC3 compartments and increased the co-localization of P62 with ubiquitinated proteins. The PI3K/AKT/mTOR pathway is responsible for ATG9b-induced ACD in activated HSCs, whereas the p38/JNK pathway is involved in apoptosis. This study provides evidence for ATG9b as a new target gene and propranolol as an agent to alleviate liver fibrosis by regulating ACD of activated HSCs.
Assuntos
Morte Celular Autofágica , Varizes Esofágicas e Gástricas , Humanos , Células Estreladas do Fígado/metabolismo , Propranolol/farmacologia , Propranolol/metabolismo , Regulação para Cima , Fosfatidilinositol 3-Quinases/metabolismo , Varizes Esofágicas e Gástricas/metabolismo , Varizes Esofágicas e Gástricas/patologia , Hemorragia Gastrointestinal/metabolismo , Hemorragia Gastrointestinal/patologia , Cirrose Hepática/metabolismo , Fígado/metabolismo , AutofagiaRESUMO
Sympathetic transduction is the study of how impulses of sympathetic nerve activity (SNA) affect end-organ function. Recently, the transduction of resting bursts of muscle SNA (MSNA) has been investigated and shown to have a role in the maintenance of blood pressure through changes in vascular tone in humans. In the present study, we investigate whether directly recorded resting cardiac SNA (CSNA) regulates heart rate (HR), coronary blood flow (CoBF), coronary vascular conductance (CVC), cardiac output (CO) and mean arterial pressure. Instrumentation was undertaken to record CSNA and relevant vascular variables in conscious sheep. Recordings were performed at baseline, as well as after the infusion of a ß-adrenoceptor blocker (propranolol) to determine the role of ß-adrenergic signalling in sympathetic transduction in the heart. The results show that after every burst of CSNA, there was a significant effect of time on HR (n = 10, ∆: +2.1 ± 1.4 beats min-1 , P = 0.002) and CO (n = 8, ∆: +100 ± 150 mL min-1 , P = 0.002) was elevated, followed by an increase in CoBF (n = 9, ∆: +0.76 mL min-1 , P = 0.001) and CVC (n = 8, ∆: +0.0038 mL min-1 mmHg-1 , P = 0.0028). The changes in HR were graded depending on the size and pattern of CSNA bursts. The HR response was significantly attenuated after the infusion of propranolol. Our study is the first to explore resting sympathetic transduction in the heart, suggesting that CSNA can dynamically change HR mediated by an action on ß-adrenoceptors. KEY POINTS: Sympathetic transduction is the study of how impulses of sympathetic nerve activity (SNA) affect end-organ function. Previous studies have examined sympathetic transduction primarily in the skeletal muscle and shown that bursts of muscle SNA alter blood flow to skeletal muscle and mean arterial pressure, although this has not been examined in the heart. We investigated sympathetic transduction in the heart and show that, in the conscious condition, the size of bursts of SNA to the heart can result in incremental increases in heart rate and coronary blood flow mediated by ß-adrenoceptors. The pattern of bursts of SNA to the heart also resulted in incremental increases in heart rate mediated by ß-adrenoceptors. This is the first study to explore the transduction of bursts of SNA to the heart.
Assuntos
Coração , Propranolol , Humanos , Ovinos , Animais , Propranolol/farmacologia , Coração/inervação , Pressão Arterial , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Sistema Nervoso Simpático/fisiologia , Receptores AdrenérgicosRESUMO
Type 1 diabetes recipients of intrahepatic islet transplantation exhibit glucose-dependent suppression of insulin and activation of glucagon secretion in response to insulin-induced hypoglycemia associated with clinical protection from hypoglycemia. Whether sympathetic activation of adrenergic receptors on transplanted islets is required for these responses in defense against hypoglycemia is not known. To evaluate the adrenergic contribution to posttransplant glucose counterregulation, we performed a randomized, double-blind crossover study of responses during a hyperinsulinemic euglycemic-hypoglycemic clamp under phentolamine (α-adrenergic blockage), propranolol (ß-adrenergic blockage), or placebo infusion. Characteristics of participants (5 females/4 males) were as follows: median (range) age 53 (34-63) yr, diabetes duration 29 (18-56) yr, posttransplant 7.0 (1.9-8.4) yr, HbA1c 5.8 (4.5-6.8)%, insulin in-/dependent 5/4, all on tacrolimus-based immunosuppression. During the clamp, blood pressure was lower with phentolamine and heart rate was lower with propranolol versus placebo (P < 0.05). There was no difference in the suppression of endogenous insulin secretion (derived from C-peptide measurements) during the euglycemic or hypoglycemic phases, and although levels of glucagon were similar with phentolamine or propranolol vs. placebo, the increase in glucagon from eu- to hypoglycemia was greater with propranolol vs. placebo (P < 0.05). Pancreatic polypeptide was greater with phentolamine versus placebo during the euglycemic phase (P < 0.05), and free fatty acids were lower and the glucose infusion rate was higher with propranolol versus placebo during the hypoglycemic phase (P < 0.05 for both). These results indicate that neither physiological α- nor ß-adrenergic blockade attenuates transplanted islet responses to hypoglycemia, suggesting sympathetic reinnervation of the islet graft is not necessary for posttransplant glucose counterregulation.NEW & NOTEWORTHY Whether adrenergic input to islets is necessary for glucose homeostasis in humans is debated. Here, the adrenergic contribution to intrahepatically transplanted islet cell responses to hypoglycemia in individuals with type 1 diabetes was investigated through α- or ß-adrenergic receptor blockade during hyperinsulinemic euglycemic-hypoglycemic clamps. Neither α- nor ß-adrenergic blockage affected the suppression of endogenous insulin or activation of glucagon secretion, suggesting that sympathetic reinnervation of islet grafts is not required for posttransplant defense against hypoglycemia.
Assuntos
Antagonistas Adrenérgicos beta , Estudos Cross-Over , Diabetes Mellitus Tipo 1 , Técnica Clamp de Glucose , Hipoglicemia , Transplante das Ilhotas Pancreáticas , Fentolamina , Propranolol , Humanos , Feminino , Masculino , Diabetes Mellitus Tipo 1/metabolismo , Pessoa de Meia-Idade , Adulto , Transplante das Ilhotas Pancreáticas/efeitos adversos , Hipoglicemia/induzido quimicamente , Hipoglicemia/metabolismo , Método Duplo-Cego , Antagonistas Adrenérgicos beta/farmacologia , Fentolamina/farmacologia , Propranolol/farmacologia , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Antagonistas Adrenérgicos alfa/farmacologia , Insulina/metabolismo , Glucagon/metabolismo , Glucagon/sangue , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismoRESUMO
Labilization-reconsolidation, which relies on retrieval, has been considered an opportunity to attenuate the negative aspects of traumatic memories. A therapeutic strategy based on reconsolidation blockade is deemed more effective than current therapies relying on memory extinction. Nevertheless, extremely stressful memories frequently prove resistant to this process. Here, after inducing robust fear memory in mice through strong fear conditioning, we examined the possibility of rendering it susceptible to pharmacological modulation based on the degree of generalized fear (GF). To achieve this, we established an ordered gradient of GF, determined by the perceptual similarity between the associated context (CA) and non-associated contexts (CB, CC, CD, and CE) to the aversive event. We observed that as the exposure context became less similar to CA, the defensive pattern shifted from passive to active behaviors in both male and female mice. Subsequently, in conditioned animals, we administered propranolol after exposure to the different contexts (CA, CB, CC, CD or CE). In males, propranolol treatment resulted in reduced freezing time and enhanced risk assessment behaviors when administered following exposure to CA or CB, but not after CC, CD, or CE, compared to the control group. In females, a similar change in behavioral pattern was observed with propranolol administered after exposure to CC, but not after the other contexts. These results highlight the possibility of indirectly manipulating a robust contextual fear memory by controlling the level of generalization during recall. Additionally, it was demonstrated that the effect of propranolol on reconsolidation would not lead to a reduction in fear memory per se, but rather to its reorganization resulting in greater behavioral flexibility (from passive to active behaviors). Finally, from a clinical viewpoint, this would be of considerable relevance since following this strategy could make the treatment of psychiatric disorders associated with traumatic memory formation more effective and less stressful.
Assuntos
Condicionamento Clássico , Medo , Propranolol , Medo/efeitos dos fármacos , Medo/fisiologia , Animais , Masculino , Propranolol/farmacologia , Feminino , Camundongos , Condicionamento Clássico/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Consolidação da Memória/fisiologia , Camundongos Endogâmicos C57BL , Memória/efeitos dos fármacos , Memória/fisiologia , Generalização Psicológica/efeitos dos fármacos , Generalização Psicológica/fisiologia , Extinção Psicológica/efeitos dos fármacosRESUMO
Pain has a negative impact on public health, reducing quality of life. Unfortunately, current treatments are not fully effective and have adverse effects. Therefore, there is a need to develop new analgesic compounds. Due to promising results regarding the antinociceptive effect of N-(3-(phenylselanyl)prop-2-in-1-yl)benzamide (SePB), this study aimed to evaluate the participation of the dopaminergic and noradrenergic systems in this effect in mice, as well as its toxicity. To this, the antagonists sulpiride (D2/D3 receptor antagonist, 5 mg/kg), SCH-23390 (D1 receptor antagonist, 0.05 mg/kg), prazosin (α1 adrenergic receptor antagonist, 0.15 mg/kg), yohimbine (α2-adrenergic receptors, 0.15 mg/kg) and propranolol (non-selective ß-adrenergic antagonist, 10 mg/kg) were administered intraperitoneally to mice 15 min before SePB (10 mg/kg, intragastrically), except for propranolol (20 min). After 26 min of SePB administration, the open field test was performed for 4 min to assess locomotor activity, followed by the tail immersion test to measure the nociceptive response. For the toxicity test, animals received a high dose of 300 mg/kg of SePB. SePB showed an increase in the latency for nociceptive response in the tail immersion test, and this effect was prevented by SCH-23390, yohimbine and propranolol, indicating the involvement of D1, α2 and ß-adrenergic receptors in the antinociceptive mechanism of the SePB effect. No changes were observed in the open field test, and the toxicity assessment suggested that SePB has low potential to induce toxicity. These findings contribute to understanding SePB's mechanism of action, with a focus on the development of new alternatives for pain treatment.
Assuntos
Propranolol , Qualidade de Vida , Camundongos , Animais , Propranolol/farmacologia , Propranolol/uso terapêutico , Analgésicos/toxicidade , Dor/tratamento farmacológico , Norepinefrina , Ioimbina/toxicidade , Ioimbina/uso terapêutico , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Dopamina , Sulpirida , Receptores Adrenérgicos alfa 2RESUMO
BACKGROUND: Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is a prevalent condition that has been associated with various forms of cancer. Although some clinical studies suggest a potential link between OSA and lung cancer, this association remains uncertain, and the underlying mechanisms are not fully understood. This study investigated the role of the catecholamine-ß-adrenergic receptor (ßAR) and the NLRP3 inflammasome in mediating the effects of CIH on lung cancer progression in mice. METHODS: Male C57BL/6 N mice were subjected to CIH for four weeks, with Lewis lung carcinoma cells seeded subcutaneously. Propranolol (a ßAR blocker) or nepicastat (an inhibitor of catecholamine production) was administered during this period. Tumor volume and tail artery blood pressure were monitored. Immunohistochemical staining and immunofluorescence staining were employed to assess protein expression of Ki-67, CD31, VEGFR2, PD-1, PD-L1, and ASC specks in tumor tissues. ELISA was used to detect catecholamine and various cytokines, while western blot assessed the expression of cyclin D1, caspase-1, and IL-1ß. In vitro tube formation assay investigated angiogenesis. NLRP3 knockout mice were used to determine the mechanism of NLRP3 in CIH. RESULTS: CIH led to an increase in catecholamine. Catecholamine-ßAR inhibitor drugs prevented the increase in blood pressure caused by CIH. Notably, the drugs inhibited CIH-induced murine lung tumor growth, and the expression of Ki-67, cyclin D1, CD31, VEGFR2, PD-1 and PD-L1 in tumor decreased. In vitro, propranolol inhibits tube formation induced by CIH mouse serum. Moreover, CIH led to an increase in TNF-α, IL-6, IL-1ß, IFN-γ and sPD-L1 levels and a decrease in IL-10 in peripheral blood, accompanied by activation of NLRP3 inflammasomes in tumor, but these effects were also stopped by drugs. In NLRP3-knockout mice, CIH-induced upregulation of PD-1/PD-L1 in tumor was inhibited. CONCLUSIONS: Our study underscores the significant contribution of ß-adrenergic signaling and the NLRP3 inflammasome to CIH-induced lung cancer progression. These pathways represent potential therapeutic targets for mitigating the impact of OSA on lung cancer.
Assuntos
Progressão da Doença , Hipóxia , Inflamassomos , Neoplasias Pulmonares , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores Adrenérgicos beta , Transdução de Sinais , Animais , Masculino , Camundongos , Antagonistas Adrenérgicos beta/farmacologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Doença Crônica , Furanos , Hipóxia/metabolismo , Indenos , Inflamassomos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Propranolol/farmacologia , Receptores Adrenérgicos beta/metabolismo , SulfonamidasRESUMO
ABSTRACT: Amphetamine derivatives are used worldwide legally or illegally and intoxications may be accompanied by cardiac arrhythmias. Here, we tested contractile effects of cumulative applied (±)-amphetamine, pseudoephedrine, nor-pseudoephedrine (cathine), and cathinone in electrically stimulated (1 Hz) human right atrial preparations (HAP) and mouse left atrial preparations and in spontaneously beating mouse right atrial preparations. In mouse atrial preparations, amphetamine increased force of contraction and beating rate in a concentration- and time-dependent manner, starting at 1 µM in left atrial preparations to 157.1% ± 3.0% and right atrial preparations to 146.6% ± 9.8% at 10 µM, respectively [mean ± standard error of the mean (SEM); n = 5; P < 0.05]. Pseudoephedrine, cathine, or cathinone alone were ineffective in mouse atrial preparations but after pre-incubation with the phosphodiesterase IV inhibitor rolipram (0.1 µM), a positive inotropic effect was noted (mean ± SEM: pseudoephedrine: 112.3% ± 9.8%; cathine: 109.0% ± 4.3%; cathinone: 138.3% ± 21.2%). The effects of all drugs were greatly attenuated by 10 µM cocaine or 10 µM propranolol treatments. However, In HAP, not only amphetamine (to a mean ± SEM of 208% ± 32%) but also pseudoephedrine (to a mean ± SEM of 287% ± 60%), cathine (to a mean ± SEM of 234% ± 52%), and cathinone (to a mean ± SEM of 217% ± 65%) increased force of contraction without the need of phosphodiesterase inhibition. The contractile effects in HAP were attenuated by 10 µM cocaine and antagonized by 10 µM propranolol. We conclude that amphetamine, pseudoephedrine, cathine, and cathinone act probably via release of noradrenaline from cardiac stores as indirect sympathomimetic agents in mouse and more pronounced in human atrial preparations.
Assuntos
Alcaloides , Anfetamina , Cocaína , Fenilpropanolamina , Humanos , Anfetamina/farmacologia , Pseudoefedrina/farmacologia , Propranolol/farmacologia , Contração MiocárdicaRESUMO
ABSTRACT: Hypercatecholaminergic conditions are known to cause heart failure and cardiac fibrosis when severe. Although previous investigations have studied the effects of beta-blockade in experimental models of catecholaminergic states, the detailed benefits of beta-blockade in more realistic models of hyper-adrenergic states were less clear. In this study, we examined acute cardiac changes in rats with hyperacute catecholamine-induced heart failure with and without propranolol treatment. Male Sprague-Dawley rats (n = 12) underwent a 6-hour infusion of epinephrine and norepinephrine alone, with an additional propranolol bolus (1 mg/kg) at hour 1 (n = 6). Cardiac tissues were examined after 6 hours. Cardiac immunohistochemistry revealed significantly decreased expression of phosphorylated p-38 (left ventricle, P = 0.021; right ventricle, P = 0.021), with upregulation of reactive oxidative species and other profibrosis proteins, after catecholamine infusion alone. After 1 propranolol 1 mg/kg bolus, the levels of phosphorylated-p38 returned to levels comparable with sham (left ventricle, P = 0.021; right ventricle, P = 0.043), with additional findings including downregulation of the apoptotic pathway and profibrotic proteins. We conclude that catecholamine-induced heart failure exerts damage through the p-38 mitogen-activated protein kinase pathway and demonstrates profibrotic changes mediated by matrix metalloproteinase 9, alpha-smooth muscle actin, and fibroblast growth factor 23. Changes in these pathways attenuated acute catecholamine-induced heart failure after propranolol bolus 1 mg/kg. We conclude that propranolol bolus at 1 mg/kg is able to mediate the effects of catecholamine excess through the p-38 mitogen-activated protein kinase pathway, profibrosis, and extrinsic apoptosis pathway.
Assuntos
Antagonistas Adrenérgicos beta , Fibrose , Insuficiência Cardíaca , Norepinefrina , Propranolol , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Masculino , Propranolol/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ratos , Antagonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/administração & dosagem , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/induzido quimicamente , Norepinefrina/metabolismo , Epinefrina/toxicidade , Epinefrina/administração & dosagem , Fosforilação , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/enzimologia , Catecolaminas/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Cancer patients often experience anticipatory nausea and vomiting (ANV) due to Pavlovian conditioning. Both N-methyl-D-aspartate and beta-adrenergic receptors are known to mediate memory formation, but their role in the development of ANV remains unclear. This study used a conditioned context aversion (CCA) paradigm, an animal model for ANV, to assess whether administration of the beta-adrenergic receptor antagonist propranolol or the N-methyl-D-aspartate receptor antagonist MK-801 immediately after CCA training has an effect on the later expression of CCA in CD1 male mice. In experiment 1, three groups were injected with lithium chloride (LiCl) to induce aversion in a novel context, resulting in CCA. A control group was injected with sodium chloride (NaCl). Following conditioning, two of the LiCl-treated groups received different doses of MK-801 (0.05 or 0.2â mg/kg), while the remaining LiCl-treated and NaCl-treated groups received a second NaCl injection. In experiment 2, two groups were injected with LiCl, and one group was injected with NaCl. After conditioning, one of the LiCl-treated groups received a propranolol injection (10â mg/kg). The remaining LiCl-treated and NaCl-treated groups received NaCl injections. Water consumption was measured in all groups 72â h later within the conditioning context. Postconditioning administration of propranolol, but not MK-801, attenuated CCA, as revealed by similar levels of water consumption in animals that received LiCl and propranolol relative to NaCl-treated animals. These findings suggest that beta-adrenergic receptor activation is crucial for the development of CCA. Therefore, propranolol may represent a novel therapeutic approach for cancer patients at high risk of ANV.
Assuntos
Antagonistas Adrenérgicos beta , Condicionamento Clássico , Modelos Animais de Doenças , Maleato de Dizocilpina , Propranolol , Propranolol/farmacologia , Animais , Maleato de Dizocilpina/farmacologia , Masculino , Camundongos , Antagonistas Adrenérgicos beta/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Náusea/tratamento farmacológico , Náusea/induzido quimicamente , Aprendizagem da Esquiva/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Vômito Precoce , Antagonistas de Aminoácidos Excitatórios/farmacologia , Relação Dose-Resposta a DrogaRESUMO
Propranolol, a nonselective ß-adrenergic receptor (ADRB) antagonist, is the first-line therapy for severe infantile hemangiomas (IH). Since the incidental discovery of propranolol efficacy in IH, preclinical and clinical investigations have shown evidence of adjuvant propranolol response in some malignant tumors. However, the mechanism for propranolol antitumor effect is still largely unknown, owing to the absence of a tumor model responsive to propranolol at nontoxic concentrations. Immunodeficient mice engrafted with different human tumor cell lines were treated with anti-VEGF bevacizumab to create a model sensitive to propranolol. Proteomics analysis was used to reveal propranolol-mediated protein alteration correlating with tumor growth inhibition, and Aquaporin-1 (AQP1), a water channel modulated in tumor cell migration and invasion, was identified. IH tissues and cells were then functionally investigated. Our functional protein association networks analysis and knockdown of ADRB2 and AQP1 indicated that propranolol treatment and AQP1 down-regulation trigger the same pathway, suggesting that AQP1 is a major driver of beta-blocker antitumor response. Examining AQP1 in human hemangioma samples, we found it exclusively in a perivascular layer, so far unrecognized in IH, made of telocytes (TCs). Functional in vitro studies showed that AQP1-positive TCs play a critical role in IH response to propranolol and that modulation of AQP1 in IH-TC by propranolol or shAQP1 decreases capillary-like tube formation in a Matrigel-based angiogenesis assay. We conclude that IH sensitivity to propranolol may rely, at least in part, on a cross talk between lesional vascular cells and stromal TCs.
Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Aquaporina 1/metabolismo , Hemangioma Capilar/metabolismo , Síndromes Neoplásicas Hereditárias/metabolismo , Neovascularização Patológica/metabolismo , Propranolol/farmacologia , Telócitos/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Hemangioma Capilar/tratamento farmacológico , Humanos , Camundongos , Síndromes Neoplásicas Hereditárias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Propranolol/uso terapêutico , Proteoma/genética , Proteoma/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Telócitos/efeitos dos fármacos , Telócitos/fisiologiaRESUMO
Adrenergic pathways represent the main channel of communication between the nervous system and the immune system. During inflammation, blood monocytes migrate within tissue and differentiate into macrophages, which polarize to M1 or M2 macrophages with tissue-damaging or -reparative properties, respectively. This study investigates whether the ß-adrenergic receptor (ß-AR)-blocking drug propranolol modulates the monocyte-to-macrophage differentiation process and further influences macrophages in their polarization toward M1- and M2-like phenotypes. Six-day-human monocytes were cultured with M-CSF in the presence or absence of propranolol and then activated toward an M1 pro-inflammatory state or an M2 anti-inflammatory state. The chronic exposure of monocytes to propranolol during their differentiation into macrophages promoted the increase in the M1 marker CD16 and in the M2 markers CD206 and CD163 and peroxisome proliferator-activated receptor É£ expression. It also increased endocytosis and the release of IL-10, whereas it reduced physiological reactive oxygen species. Exposure to the pro-inflammatory conditions of propranolol-differentiated macrophages resulted in an anti-inflammatory promoting effect. At the molecular level, propranolol upregulated the expression of the oxidative stress regulators NRF2, heme oxygenase-1 and NQO1. By contributing to regulating macrophage activities, propranolol may represent a novel anti-inflammatory and immunomodulating compound with relevant therapeutic potential in several inflammatory diseases.
Assuntos
Monócitos , Propranolol , Humanos , Propranolol/farmacologia , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Macrófagos , Anti-Inflamatórios/farmacologiaRESUMO
In the aging population, choroidal vessels grow through the Bruch's membrane, resulting in a loss of central vision due to choroidal neovascularization (CNV). During active neovascularization, CNV is associated with inappropriate levels of apoptosis in multiple cell types, including choroidal endothelial cells (ChECs). Bim is a pro-apoptotic member of the Bcl-2 family. It is essential for cell apoptosis due to exposure to drugs such as dexamethasone or decreased pro-survival factors, including vascular endothelial growth factor (VEGF). To better elucidate the cell autonomous contribution of Bim expression in the integrity and neovascularization of the choroidal vasculature, we isolated ChECs from wild-type and Bim-deficient (Bim-/-) mice. ChECs lacking Bim expression demonstrated increased expression of VEGF, osteopontin, and the inflammatory cytokines Rantes/Ccl5 and IL6. Bim-/- ChECs were more proliferative and demonstrated an increased capacity to undergo capillary morphogenesis. Anti-VEGF had a diminished capacity to disrupt capillary morphogenesis in Bim-/- ChECs. In vivo, utilizing the mouse laser photocoagulation model, anti-VEGF treatment mitigated CNV in wild-type but not Bim-/- mice. We also tested other modalities that are thought to not require the intrinsic death pathway for their function and showed that propranolol, anti-CTGF, and the TSP1-mimetic peptide ABT898 mitigated CNV in mice lacking Bim expression to varying degrees. Thus, in ChECs, Bim expression could impact the effectiveness of treatment modalities that require the intrinsic death pathway to mitigate CNV.
Assuntos
Proteína 11 Semelhante a Bcl-2 , Corioide , Neovascularização de Coroide , Células Endoteliais , Animais , Proteína 11 Semelhante a Bcl-2/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Células Endoteliais/metabolismo , Camundongos , Corioide/metabolismo , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Neovascularização de Coroide/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Camundongos Knockout , Apoptose , Camundongos Endogâmicos C57BL , Proliferação de Células , Propranolol/farmacologiaRESUMO
The present study examined three hallucinogenic amphetamine derivatives, namely, 2,5-dimethoxy-4-iodoamphetamine (DOI) as well as 2,5-dimethoxy-4-methylamphetamine (DOM) and 4-methylmethcathinone (mephedrone). The objective of this study was to test the hypothesis that DOI, DOM, and mephedrone would increase the contractile force in isolated human atrial preparations in a manner similar to amphetamine. To this end, we measured contractile force under isometric conditions in electrically stimulated (1 Hz) human atrial preparations obtained during open surgery. DOI and DOM alone or in the presence of isoprenaline reduced the contractile force concentration-dependently in human atrial preparations. These negative inotropic effects of DOM and DOI were not attenuated by 10 µM atropine. However, mephedrone increased the contractile force in human atrial preparations in a concentration- and time-dependent manner. Furthermore, these effects were attenuated by the subsequent addition of 10 µM propranolol or pretreatment with 10 µM cocaine in the organ bath. Therefore, it can be concluded that amphetamine derivatives may exert opposing effects on cardiac contractile force. The precise mechanism by which DOI and DOM exert their negative inotropic effects remains unknown at present. The cardiac effects of mephedrone are probably due to the release of cardiac noradrenaline.
Assuntos
Alucinógenos , Átrios do Coração , Contração Miocárdica , Humanos , Átrios do Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Alucinógenos/farmacologia , Masculino , Feminino , Isoproterenol/farmacologia , Metanfetamina/farmacologia , Metanfetamina/análogos & derivados , Atropina/farmacologia , Anfetaminas/farmacologia , Pessoa de Meia-Idade , Propranolol/farmacologia , Anfetamina/farmacologia , AdultoRESUMO
The pivotal role of the basolateral amygdala (BLA) in the emotional modulation of hippocampal plasticity and memory consolidation is well-established. Specifically, multiple studies have demonstrated that the activation of the noradrenergic (NA) system within the BLA governs these modulatory effects. However, most current evidence has been obtained by direct infusion of synthetic NA or beta-adrenergic agonists. In the present study, we aimed to investigate the effect of endogenous NA release in the BLA, induced by a natural aversive stimulus (coyote urine), on memory consolidation for a low-arousing, hippocampal-dependent task. Our experiments combined a weak object location task (OLT) version with subsequent mild predator odor exposure (POE). To investigate the role of endogenous NA in the BLA in memory modulation, a subset of the animals (Wistar rats) was treated with the non-selective beta-blocker propranolol at the end of the behavioral procedures. Hippocampal tissue was collected 90 min after drug infusion or after the OLT test, which was performed 24 h later. We used the obtained samples to estimate the levels of phosphorylated CREB (pCREB) and activity-regulated cytoskeleton-associated protein (Arc)-two molecular markers of experience-dependent changes in neuronal activity. The result suggests that POE has the potential to become a valuable behavioral paradigm for studying the interaction between BLA and the hippocampus in memory prioritization and selectivity.
Assuntos
Complexo Nuclear Basolateral da Amígdala , Emoções , Hipocampo , Consolidação da Memória , Norepinefrina , Odorantes , Ratos Wistar , Animais , Consolidação da Memória/fisiologia , Consolidação da Memória/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Masculino , Ratos , Norepinefrina/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Hipocampo/efeitos dos fármacos , Emoções/fisiologia , Emoções/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Propranolol/farmacologiaRESUMO
OBJECTIVES: To investigate the effects of propranolol on the proliferation, apoptosis, migration, and tube formation ability of human umbilical vein endothelial cells (HUVEC), as well as its impact on the expression of sex-determining region Y-box 18 (SOX18), matrix metalloproteinase-7 (MMP-7), and vascular endothelial growth factor A (VEGFA). METHODS: HUVEC were treated with different concentrations of propranolol, and cell viability was assessed using the CCK-8 method to determine the optimal concentration and treatment duration. The experiment consisted of a control group and groups treated with different concentrations of propranolol (50, 100, 150 µmol/L). Apoptosis, migration, and tube formation of HUVEC were observed using flow cytometry, wound healing assays, and tube formation assays. Western blot and real-time quantitative PCR were used to detect the expression levels of SOX18, MMP-7, and VEGFA proteins and mRNA. RESULTS: Compared to the control group, the apoptosis rate in the propranolol treatment groups increased significantly (P<0.05), and it rose significantly with increasing drug concentration (P<0.05). The wound healing rate decreased in the propranolol treatment groups, and both the number of tube formation nodes and total tube length were reduced (P<0.05). The expression levels of SOX18, MMP-7, and VEGFA proteins and mRNA were downregulated in the propranolol treatment groups (P<0.05). CONCLUSIONS: Propranolol can inhibit the proliferation, migration, and tube formation ability of HUVEC and promote cell apoptosis, resulting in decreased expression levels of SOX18, MMP-7, and VEGFA.
Assuntos
Apoptose , Células Endoteliais da Veia Umbilical Humana , Metaloproteinase 7 da Matriz , Propranolol , Fatores de Transcrição SOXF , Fator A de Crescimento do Endotélio Vascular , Humanos , Propranolol/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Apoptose/efeitos dos fármacos , Fatores de Transcrição SOXF/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacosRESUMO
Infantile hemangioma (IH) is the most common benign tumor in infancy. Propranolol, a nonselective ß-adrenergic receptor blocker, is now the first-line therapy for IH. Recently, low sensitivity to propranolol therapy has become one major reason for the failure of IH treatment. However, the exact underlying mechanisms are yet to be fully elucidated. Here, we reported that pyruvate kinase isoform M2 (PKM2), an essential glycolytic enzyme, played a critical role in regulating the progression of IH and the therapeutic resistance of propranolol treatment. Shikonin reversed the propranolol resistance in hemangioma-derived endothelial cells and in hemangioma animal models. Moreover, shikonin combined with propranolol could induce excessive reactive oxygen species (ROS) accumulation and lead to autophagic dysfunction, which is essential for the enhanced therapeutic sensitivity of propranolol treatment. Taken together, our results indicated that PKM2 has a significant role in hemangiomas progression and therapeutic resistance; it could be a safe and effective therapeutic strategy for those hemangiomas with poor propranolol sensitivity combined with shikonin.
Assuntos
Hemangioma , Neoplasias Cutâneas , Animais , Propranolol/farmacologia , Espécies Reativas de Oxigênio , Piruvato Quinase , Células Endoteliais/patologia , Antagonistas Adrenérgicos beta/uso terapêutico , Hemangioma/tratamento farmacológico , Resultado do Tratamento , Neoplasias Cutâneas/tratamento farmacológicoRESUMO
BACKGROUND: There is accumulating evidence that propranolol, an antagonist of beta-1 and beta-2 adrenoreceptors, extends survival of patients with prostate cancer; yet it is not known whether propranolol inhibits beta-adrenergic signaling in prostate cancer cells, or systemic effects of propranolol play the leading role in slowing down cancer progression. Recently initiated clinical studies offer a possibility to test whether administration of propranolol inhibits signaling pathways in prostate tumors, however, there is limited information on the dynamics of signaling pathways activated downstream of beta-2 adrenoreceptors in prostate cancer cells and on the inactivation of these pathways upon propranolol administration. METHODS: Western blot analysis was used to test the effects of epinephrine and propranolol on activation of protein kinase (PKA) signaling in mouse prostates and PKA, extracellular signal-regulated kinase (ERK), and protein kinase B/AKT (AKT) signaling in prostate cancer cell lines. RESULTS: In prostate cancer cell lines epinephrine induced robust phosphorylation of PKA substrates pS133CREB and pS157VASP that was evident 2 min after treatments and lasted for 3-6 h. Epinephrine induced phosphorylation of AKT in PTEN-positive 22Rv1 cells, whereas changes of constitutive AKT phosphorylation were minimal in PTEN-negative PC3, C42, and LNCaP cells. A modest short-term increase of pERK in response to epinephrine was observed in all tested cell lines. Incubation of prostate cancer cells with 10-fold molar excess of propranolol for 30 min inhibited all downstream pathways activated by epinephrine. Subjecting mice to immobilization stress induced phosphorylation of S133CREB, whereas injection of propranolol at 1.5 mg/kg prevented the stress-induced phosphorylation. CONCLUSIONS: The analysis of pS133CREB and pS157VASP allows measuring activation of PKA signaling downstream of beta-2 adrenoreceptors. Presented results on the ratio of propranolol/epinephrine and the time needed to inhibit signaling downstream of beta-2 adrenoreceptors will help to design clinical studies that examine the effects of propranolol on prostate tumors.
Assuntos
Propranolol , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Propranolol/farmacologia , Propranolol/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Fosforilação , Epinefrina/farmacologia , Epinefrina/metabolismoRESUMO
BACKGROUND & AIMS: ß-blockers reduce hepatic venous pressure gradient (HVPG) by decreasing portal inflow, with no reduction in intrahepatic vascular resistance. 5-Methyltetrahydrofolate (5-MTHF) can prevent oxidative loss of tetrahydrobiopterin (BH4), a cofactor for endothelial nitric oxide synthase coupling. It also converts homocysteine (tHcy) into methionine and enables the degradation of asymmetric dimethylarginine (ADMA), an inhibitor of endothelial nitric oxide synthase. The aim of this study was to evaluate the effects of 5-MTHF in combination with propranolol on HVPG and nitric oxide bioavailability markers in patients with cirrhosis and portal hypertension. METHOD: Sixty patients with cirrhosis and HVPG ≥12 mmHg were randomized 1:1 to receive treatment with 5-MTHF+propranolol or placebo+propranolol for 90 days under double-blind conditions. HVPG and markers of nitric oxide bioavailability (BH4, ADMA and tHcy) were measured again at the end of treatment. RESULTS: Groups were similar in terms of baseline clinical and hemodynamic data and nitric oxide bioavailability markers. HVPG decreased in both groups, but the magnitude of the change was significantly greater in the group treated with 5-MTHF+propranolol compared to placebo+propranolol (percentage decrease, 20 [29-9] vs. 12.5 [22-0], p = 0.028), without differences in hepatic blood flow. At the end of treatment, 5-MTHF+propranolol (vs. placebo+propranolol) was associated with higher BH4 (1,101.4 ± 1,413.3 vs. 517.1 ± 242.8 pg/ml, p <0.001), lower ADMA (109.3 ± 52.7 vs. 139.9 ± 46.7 µmol/L, p = 0.027) and lower tHcy (µmol/L, 11.0 ± 4.6 vs. 15.4 ± 7.2 µmol/L, p = 0.010) plasma levels. CONCLUSION: In patients with cirrhosis and portal hypertension, 5-MTHF administration significantly enhanced the HVPG reduction achieved with propranolol. This effect appears to be mediated by improved nitric oxide bioavailability in the hepatic microcirculation. CLINICAL TRIAL EUDRACT NUMBER: 2014-002018-21. IMPACT AND IMPLICATIONS: Currently, the pharmacological prevention of cirrhosis complications due to portal hypertension, such as esophageal varices rupture, is based on the use of ß-blockers, but some patients still present with acute variceal bleeding, mainly due to an insufficient reduction of portal pressure. In this study, we sought to demonstrate that the addition of folic acid to ß-blockers is more effective in reducing portal pressure than ß-blockers alone. This finding could represent the basis for validation studies in larger cohorts, which could impact the future prophylactic management of variceal bleeding in cirrhosis. Enhancing the benefit of ß-blockers with a safe, accessible, cost-effective drug could improve clinical outcomes in cirrhosis, which in turn could translate into a reduction in the rates and costs of hospitalization, and ultimately into improved survival.
Assuntos
Varizes Esofágicas e Gástricas , Hipertensão Portal , Humanos , Propranolol/uso terapêutico , Propranolol/farmacologia , Varizes Esofágicas e Gástricas/complicações , Óxido Nítrico Sintase Tipo III/farmacologia , Óxido Nítrico Sintase Tipo III/uso terapêutico , Pressão na Veia Porta , Óxido Nítrico , Hemorragia Gastrointestinal/prevenção & controle , Antagonistas Adrenérgicos beta/uso terapêutico , Antagonistas Adrenérgicos beta/farmacologia , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Hipertensão Portal/etiologia , Hipertensão Portal/complicaçõesRESUMO
The establishment of effective antitumor immune responses of vaccines is mainly limited by insufficient priming tumor infiltration of T cells and immunosuppressive tumor microenvironment (TME). Targeting ß-adrenergic receptor (ß-AR) signaling exerts promising benefits on reversing the suppressive effects directly on T cells, but it appears to have considerably limited antitumor performance when combined with vaccine-based immunotherapies. Herein, a tumor membrane-coated nanoplatform for codelivery of adjuvant CpG and propranolol (Pro), a ß-AR inhibitor is designed. The biomimetic nanovaccine displayed an improved accumulation in lymph nodes and sufficient drug release, thereby inducing dendritic cell maturation and antigen presentation. Meanwhile, the integration of vaccination and blockade of ß-AR signaling not only promoted the priming of the naive CD8+ T cells and effector T cell egress from lymph nodes, but also alleviated the immunosuppressive TME by decreasing the frequency of immunosuppressive cells and increasing the tumor infiltration of B cells and NK cells. Consequently, the biomimetic nanovaccines outperformed greater prophylactic and therapeutic efficacy than nanovaccines without Pro encapsulation in B16-F10 melanoma mice. Taken together, the work explored a biomimetic nanovaccine for priming tumor infiltration of T cells and immunosuppressive TME regulation, offering tremendous potential for a combined ß-AR signaling-targeting strategy in cancer immunotherapy.