Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968120

RESUMO

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Assuntos
Quinases Dyrk , Proteínas Hedgehog , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco , Animais , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proliferação de Células , Cílios/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteínas Nucleares , Proteínas Repressoras
2.
Dev Biol ; 515: 92-101, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39029571

RESUMO

Congenital lung malformations are fatal at birth in their severe forms. Prevention and early intervention of these birth defects require a comprehensive understanding of the molecular mechanisms of lung development. We find that the loss of inturned (Intu), a cilia and planar polarity effector gene, severely disrupts growth and branching morphogenesis of the mouse embryonic lungs. Consistent with our previous results indicating an important role for Intu in ciliogenesis and hedgehog (Hh) signaling, we find greatly reduced number of primary cilia in both the epithelial and mesenchymal tissues of the lungs. We also find significantly reduced expression of Gli1 and Ptch1, direct targets of Hh signaling, suggesting disruption of cilia-dependent Hh signaling in Intu mutant lungs. An agonist of the Hh pathway activator, smoothened, increases Hh target gene expression and tubulogenesis in explanted wild type, but not Intu mutant, lungs, suggesting impaired Hh signaling response underlying lung morphogenetic defects in Intu mutants. Furthermore, removing both Gli2 and Intu completely abolishes branching morphogenesis of the lung, strongly supporting a mechanism by which Intu regulates lung growth and patterning through cilia-dependent Hh signaling. Moreover, a transcriptomics analysis identifies around 200 differentially expressed genes (DEGs) in Intu mutant lungs, including known Hh target genes Gli1, Ptch1/2 and Hhip. Genes involved in muscle differentiation and function are highly enriched among the DEGs, consistent with an important role of Hh signaling in airway smooth muscle differentiation. In addition, we find that the difference in gene expression between the left and right lungs diminishes in Intu mutants, suggesting an important role of Intu in asymmetrical growth and patterning of the mouse lungs.


Assuntos
Cílios , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Pulmão , Transdução de Sinais , Animais , Camundongos , Padronização Corporal/genética , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Pulmão/embriologia , Pulmão/metabolismo , Morfogênese/genética , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética
3.
Proc Natl Acad Sci U S A ; 119(43): e2206571119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252002

RESUMO

Development of mammalian auditory epithelium, the organ of Corti, requires precise control of both cell cycle withdrawal and differentiation. Sensory progenitors (prosensory cells) in the cochlear apex exit the cell cycle first but differentiate last. Sonic hedgehog (Shh) signaling is required for the spatiotemporal regulation of prosensory cell differentiation, but the underlying mechanisms remain unclear. Here, we show that suppressor of fused (Sufu), a negative regulator of Shh signaling, is essential for controlling the timing and progression of hair cell (HC) differentiation. Removal of Sufu leads to abnormal Atoh1 expression and a severe delay of HC differentiation due to elevated Gli2 mRNA expression. Later in development, HC differentiation defects are restored in the Sufu mutant by the action of speckle-type PDZ protein (Spop), which promotes Gli2 protein degradation. Deletion of both Sufu and Spop results in robust Gli2 activation, exacerbating HC differentiation defects. We further demonstrate that Gli2 inhibits HC differentiation through maintaining the progenitor state of Sox2+ prosensory cells. Along the basal-apical axis of the developing cochlea, the Sox2 expression level is higher in the progenitor cells than in differentiating cells and is down-regulated from base to apex as differentiation proceeds. The dynamic spatiotemporal change of Sox2 expression levels is controlled by Shh signaling through Gli2. Together, our results reveal key functions of Gli2 in sustaining the progenitor state, thereby preventing HC differentiation and in turn governing the basal-apical progression of HC differentiation in the cochlea.


Assuntos
Células Ciliadas Auditivas , Proteínas Hedgehog , Animais , Diferenciação Celular/genética , Cóclea/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/metabolismo , Proteínas Hedgehog/metabolismo , Mamíferos/genética , RNA Mensageiro/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876764

RESUMO

The pterin-dependent nonheme iron enzymes hydroxylate aromatic amino acids to perform the biosynthesis of neurotransmitters to maintain proper brain function. These enzymes activate oxygen using a pterin cofactor and an aromatic amino acid substrate bound to the FeII active site to form a highly reactive FeIV = O species that initiates substrate oxidation. In this study, using tryptophan hydroxylase, we have kinetically generated a pre-FeIV = O intermediate and characterized its structure as a FeII-peroxy-pterin species using absorption, Mössbauer, resonance Raman, and nuclear resonance vibrational spectroscopies. From parallel characterization of the pterin cofactor and tryptophan substrate-bound ternary FeII active site before the O2 reaction (including magnetic circular dichroism spectroscopy), these studies both experimentally define the mechanism of FeIV = O formation and demonstrate that the carbonyl functional group on the pterin is directly coordinated to the FeII site in both the ternary complex and the peroxo intermediate. Reaction coordinate calculations predict a 14 kcal/mol reduction in the oxygen activation barrier due to the direct binding of the pterin carbonyl to the FeII site, as this interaction provides an orbital pathway for efficient electron transfer from the pterin cofactor to the iron center. This direct coordination of the pterin cofactor enables the biological function of the pterin-dependent hydroxylases and demonstrates a unified mechanism for oxygen activation by the cofactor-dependent nonheme iron enzymes.


Assuntos
Ferro/metabolismo , Neurotransmissores/biossíntese , Proteínas Nucleares/metabolismo , Pterinas/química , Proteína Gli2 com Dedos de Zinco/metabolismo , Humanos , Ferro/química , Proteínas Nucleares/química , Oxigênio/metabolismo , Pterinas/metabolismo , Triptofano/química , Triptofano/metabolismo , Proteína Gli2 com Dedos de Zinco/química
5.
Environ Toxicol ; 39(7): 3833-3845, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546377

RESUMO

Depleted uranium (DU) retains the radiological toxicities, which accumulates preferentially in the kidneys. Hedgehog (Hh) pathway plays a critical role in tissue injury. However, the role of Hh in DU-induced nephrotoxicity was still unclear. This study was carried out to investigate the effect of Gli2, which was an important transcription effector of Hh signaling, on DU induced nephrotoxicity. To clarify it, CK19 positive tubular epithelial cells specific Gli2 conditional knockout (KO) mice model was exposed to DU, and then histopathological damage and Hh signaling pathway activation was analyzed. Moreover, HEK-293 T cells were exposed to DU with Gant61 or Gli2 overexpression, and cytotoxicity of DU as analyzed. Results showed that DU caused nephrotoxicity accompanied by activation of Hh signaling pathway. Meanwhile, genetic KO of Gli2 reduced DU-induced nephrotoxicity by normalizing biochemical indicators and reducing Hh pathway activation. Pharmacologic inhibition of Gli1/2 by Gant61 reduced DU induced cytotoxicity by inhibiting apoptosis, ROS formation and Hh pathway activation. However, overexpression of Gli2 aggravated DU-induced cytotoxicity by increasing the levels of apoptosis and ROS formation. Taken together, these results revealed that Hh signaling negatively regulated DU-inducted nephrotoxicity, and that inhibition of Gli2 might serve as a promising nephroprotective target for DU-induced kidney injury.


Assuntos
Proteínas Hedgehog , Rim , Camundongos Knockout , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Humanos , Células HEK293 , Transdução de Sinais/efeitos dos fármacos , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Camundongos , Urânio/toxicidade , Apoptose/efeitos dos fármacos , Piridinas/farmacologia , Piridinas/toxicidade , Masculino , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/metabolismo , Pirimidinas/farmacologia , Pirimidinas/toxicidade , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731849

RESUMO

Tumors of the head and neck, more specifically the squamous cell carcinoma, often show upregulation of the Hedgehog signaling pathway. However, almost nothing is known about its role in the sinonasal adenocarcinoma, either in intestinal or non-intestinal subtypes. In this work, we have analyzed immunohistochemical staining of six Hedgehog pathway proteins, sonic Hedgehog (SHH), Indian Hedgehog (IHH), Patched1 (PTCH1), Gli family zinc finger 1 (GLI1), Gli family zinc finger 2 (GLI2), and Gli family zinc finger 3 (GLI3), on 21 samples of sinonasal adenocarcinoma and compared them with six colon adenocarcinoma and three salivary gland tumors, as well as with matching healthy tissue, where available. We have detected GLI2 and PTCH1 in the majority of samples and also GLI1 in a subset of samples, while GLI3 and the ligands SHH and IHH were generally not detected. PTCH1 pattern of staining shows an interesting pattern, where healthy samples are mostly positive in the stromal compartment, while the signal shifts to the tumor compartment in tumors. This, taken together with a stronger signal of GLI2 in tumors compared to non-tumor tissues, suggests that the Hedgehog pathway is indeed activated in sinonasal adenocarcinoma. As Hedgehog pathway inhibitors are being tested in combination with other therapies for head and neck squamous cell carcinoma, this could provide a therapeutic option for patients with sinonasal adenocarcinoma as well.


Assuntos
Adenocarcinoma , Proteínas Hedgehog , Imuno-Histoquímica , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Humanos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Masculino , Feminino , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Pessoa de Meia-Idade , Projetos Piloto , Idoso , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Neoplasias dos Seios Paranasais/metabolismo , Neoplasias dos Seios Paranasais/patologia , Adulto , Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso , Proteínas Nucleares
7.
Cancer Sci ; 114(9): 3608-3622, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37417427

RESUMO

Increasing evidence has shown that circular RNAs (circRNAs) interact with RNA-binding proteins (RBPs) and promote cancer progression. However, the function and mechanism of the circRNA/RBP complex in esophageal squamous cell carcinoma (ESCC) are still largely unknown. Herein, we first characterized a novel oncogenic circRNA, circ-FIRRE, by RNA sequencing (Ribo-free) profiling of ESCC samples. Furthermore, we observed marked circ-FIRRE overexpression in ESCC patients with high TNM stage and poor overall survival. Mechanistic studies indicated that circ-FIRRE, as a platform, interacts with the heterogeneous nuclear ribonucleoprotein C (HNRNPC) protein to stabilize GLI2 mRNA by directly binding to its 3'-UTR in the cytoplasm, thereby resulting in elevated GLI2 protein expression and subsequent transcription of its target genes MYC, CCNE1, and CCNE2, ultimately contributing to ESCC progression. Moreover, HNRNPC overexpression in circ-FIRRE knockdown cells notably abolished circ-FIRRE knockdown-mediated Hedgehog pathway inhibition and ESCC progression impairment in vitro and in vivo. Clinical specimen results showed that circ-FIRRE and HNRNPC expression was positively correlated with GLI2 expression, which reveals the clear significance of the circ-FIRRE/HNRNPC-GLI2 axis in ESCC. In summary, our results indicate that circ-FIRRE could serve as a valuable biomarker and potential therapeutic target for ESCC and highlight a novel mechanism of the circ-FIRRE/HNRNPC complex in ESCC progression regulation.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Esofágicas/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , RNA Mensageiro/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , MicroRNAs/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteínas Nucleares/genética
8.
Biochem Biophys Res Commun ; 676: 182-189, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523816

RESUMO

It has been reported that cadherin 6 (CDH6) upregulation is associated with enhanced epithelial-to-mesenchymal transition (EMT) in several types of solid tumor cells. The current study aimed to explore the effect of CDH6 on the migration and invasion of stomach adenocarcinoma (STAD) cells, the transcription factors involved in CDH6 dysregulation and their effect on mitochondrial fission. Bioinformatics analysis was performed using data extracted from the Genotype-Tissue Expression Project, the Cancer Genome Atlas and Kaplan-Meier plotter. AGS and HGC27 cells were used to establish an in vitro STAD cell model. The results showed that higher CDH6 expression was associated with significantly shorter overall survival in patients with STAD. In addition, CDH6 overexpression promoted wound healing, enhanced the invasion ability of tumor cells and increased mitochondrial fission. Glioma-associated oncogene family zinc finger 2 (GLI2) could bind to the CDH6 promoter and activate its transcription. Fluorescent labeling also showed that GLI2 overexpression promoted mitochondrial fission. However, CDH6 silencing significantly reduced mitochondrial fragmentation. Besides, GLI2 overexpression notably upregulated phosphorylated-focal adhesion kinase and dynamin-related protein 1. However, the above effects were largely abrogated by CDH6 knockdown. In conclusion, the present study suggested that the novel GLI2/CDH6 axis could enhance the migration, invasion and mitochondrial fission of STAD cells.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Adenocarcinoma/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Dinâmica Mitocondrial , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Proteína Gli2 com Dedos de Zinco/metabolismo
9.
Biochem Biophys Res Commun ; 666: 179-185, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37199136

RESUMO

Hedgehog (Hh) signaling is involved in multiple biological events including development and cancers. It is processed through primary cilia, which are assembled from the mother centriole in most mammalian cells. Pancreatic ductal adenocarcinoma (PDAC) cells generally lose their primary cilia; thus, the Hh signaling pathway is postulated to be independent of the organelle in PDAC. We previously reported that the mother centriole-specific protein, centrosomal protein 164 (CEP164), is required for centriolar localization of the GLI2 transcription factor in Hh signaling and for suppressing the expression of Hh-target genes. In this study, we demonstrated the physical interaction between CEP164 and GLI2, and delineated their binding modes at the mother centriole. The ectopically expressed GLI2-binding region of CEP164 reduced the centriolar GLI2 localization and enhanced the expression of Hh-target genes in PDAC cells. Furthermore, similar phenotypes were observed in PDAC cells lacking primary cilia. These results suggest that the CEP164-GLI2 association at the mother centriole is responsible for controlling Hh signaling, independent of primary cilia in PDAC cells.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Cílios/metabolismo , Transdução de Sinais , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Mamíferos/metabolismo , Neoplasias Pancreáticas
10.
Development ; 147(3)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932349

RESUMO

Cerebellar granule cell (GC) development relies on precise regulation of sonic hedgehog (Shh)-Gli signalling activity, failure of which is associated with motor disorders and medulloblastoma. Mutations in the pathway regulator suppressor of fused (Sufu), which modulates Gli activators and repressors, are linked to cerebellar dysfunction and tumourigenesis. The mechanism by which Sufu calibrates Shh signalling in GCs is unknown. Math1-Cre-mediated deletion of Sufu in mouse GC progenitors (GCPs) demonstrated that Sufu restricts GCP proliferation and promotes cell cycle exit, by promoting expression of Gli3R and suppressing Gli2 levels. Sufu is also required to promote a high threshold of pathway activity in GCPs. Remarkably, central cerebellar lobules are more deleteriously impacted by Sufu deletion, but are less sensitive to downstream genetic manipulations to reduce Gli2 expression or overexpress a Gli3R mimic, compared with anterior lobules. Transcriptome sequencing uncovered new Sufu targets, especially Fgf8, which is upregulated in Sufu-mutant GCPs. We demonstrate that Fgf8 is necessary and sufficient to drive Sufu-mutant GCP proliferation. This study reveals new insights into the spatial and temporal regulation of cerebellar Shh-Gli signalling, while uncovering new targets, such as Fgf8.


Assuntos
Proliferação de Células/genética , Cerebelo/citologia , Fator 8 de Crescimento de Fibroblasto/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Animais , Ciclo Celular/genética , Cerebelo/crescimento & desenvolvimento , Feminino , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Transcriptoma , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/genética
11.
Exp Cell Res ; 412(1): 113009, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990616

RESUMO

LINC010503 is a novel oncogenic lncRNA in multiple cancers. In this study, we further explored the expression of LINC010503 transcripts and their regulations on the glioblastoma (GBM) stem cell (GSC) properties. LINC01503 transcription patterns in GBM and normal brain tissues were compared using RNA-seq data from Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA)-GBM. GBM cell lines (U251 and U87) were used as in vitro cell models for cellular and molecular studies. The results showed that ENST00000444125 was the dominant transcript of LINC01503 in both normal and tumor tissues. Its expression was significantly elevated in the tumor group and associated with poor survival outcomes. LINC01503 had both cytoplasmic and nuclear distribution. It positively modulated the expression of multiple GSC markers, including CD133, SOX2, NESTIN, ALDH1A1, and MSI1, and tumorsphere formation in U251 and U87 cells. RNA pull-down and RIP-qPCR assay confirmed an interaction between ENST00000444125 and GLI2. ENST00000444125 positively regulated the half-life of the GLI2 protein in GBM cells. ENST00000444125 overexpression reduced GLI2 ubiquitination and partially attenuated FBXW1 overexpression induced GLI2 ubiquitination. ENST00000444125 overexpression could activate Wnt/ß-catenin signaling in GBM cells. However, these activating effects were remarkedly hampered when GLI2 was knocked down. In conclusion, this study revealed that LINC01503 might have isoform-specific dysregulation in GBM. Among the two major transcripts expressed in GBM cells, ENST00000444125 might be the major functional transcript. Its upregulation might enhance the GSC properties of GBM cells via reducing FBXW1-mediated proteasomal degradation of GLI2.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fenótipo , Prognóstico , Proteólise , RNA Longo não Codificante/metabolismo , Via de Sinalização Wnt , Proteína Gli2 com Dedos de Zinco/antagonistas & inibidores , Proteína Gli2 com Dedos de Zinco/genética , Proteínas Contendo Repetições de beta-Transducina/genética
12.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240209

RESUMO

A crucial regulator in melanoma progression and treatment resistance is tumor microenvironments, and Hedgehog (Hh) signals activated in a tumor bone microenvironment are a potential new therapeutic target. The mechanism of bone destruction by melanomas involving Hh/Gli signaling in such a tumor microenvironment is unknown. Here, we analyzed surgically resected oral malignant melanoma specimens and observed that Sonic Hedgehog, Gli1, and Gli2 were highly expressed in tumor cells, vasculatures, and osteoclasts. We established a tumor bone destruction mouse model by inoculating B16 cells into the bone marrow space of the right tibial metaphysis of 5-week-old female C57BL mice. An intraperitoneal administration of GANT61 (40 mg/kg), a small-molecule inhibitor of Gli1 and Gli2, resulted in significant inhibition of cortical bone destruction, TRAP-positive osteoclasts within the cortical bone, and endomucin-positive tumor vessels. The gene set enrichment analysis suggested that genes involved in apoptosis, angiogenesis, and the PD-L1 expression pathway in cancer were significantly altered by the GANT61 treatment. A flow cytometry analysis revealed that PD-L1 expression was significantly decreased in cells in which late apoptosis was induced by the GANT61 treatment. These results suggest that molecular targeting of Gli1 and Gli2 may release immunosuppression of the tumor bone microenvironment through normalization of abnormal angiogenesis and bone remodeling in advanced melanoma with jaw bone invasion.


Assuntos
Proteínas Hedgehog , Melanoma , Feminino , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Microambiente Tumoral , Antígeno B7-H1 , Proteína GLI1 em Dedos de Zinco/metabolismo , Camundongos Endogâmicos C57BL , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Linhagem Celular Tumoral
13.
J Recept Signal Transduct Res ; 42(2): 169-172, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33615977

RESUMO

PURPOSE: Hedgehog (Hh) signaling pathway regulates a variety of tumors-related diseases including leukemia. Whether inhibition of TGF-ß1 on Gli2 expression is promoted by TNF-α in primary leukemia cells remains to be determined. METHODS: Primary leukemia cells were treated with TGF-ß1, TNF-α or SIS3 at different concentrations. Gli2 expression was detected by quantitative real-time PCR and western blot analyses. RESULTS: We found that TGF-ß significantly decreased Gli2 expression, and co-treatment with TNF-αfurther decreased Gli2 expression in primary leukemia cells. TNF-α can increased TGF-ßRI and TGF-ßRII protein expression in primary leukemia cells, while SIS3 inhibited the effect of TGF-ß. CONCLUSION: Our results suggest that Gli2 expression in primary leukemia cells is induced by TGF-ß in a Smad3-dependent manner, and independent of Hh receptor signaling.


Assuntos
Leucemia , Fator de Crescimento Transformador beta1 , Fator de Necrose Tumoral alfa , Proteína Gli2 com Dedos de Zinco , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
14.
FASEB J ; 35(5): e21530, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33813752

RESUMO

Circadian clock is involved in regulating most renal physiological functions, including water and electrolyte balance and blood pressure homeostasis, however, the role of circadian clock in renal pathophysiology remains largely unknown. Here we aimed to investigate the role of Bmal1, a core clock component, in the development of renal fibrosis, the hallmark of pathological features in many renal diseases. The inducible Bmal1 knockout mice (iKO) whose gene deletion occurred in adulthood were used in the study. Analysis of the urinary water, sodium and potassium excretion showed that the iKO mice exhibit abolished diurnal variations. In the model of renal fibrosis induced by unilateral ureteral obstruction, the iKO mice displayed significantly decreased tubulointerstitial fibrosis reflected by attenuated collagen deposition and mitigated expression of fibrotic markers α-SMA and fibronectin. The hedgehog pathway transcriptional effectors Gli1 and Gli2, which have been reported to be involved in the pathogenesis of renal fibrosis, were significantly decreased in the iKO mice. Mechanistically, ChIP assay and luciferase reporter assay revealed that BMAL1 bound to the promoter of and activate the transcription of Gli2, but not Gli1, suggesting that the involvement of Bmal1 in renal fibrosis was possibly mediated via Gli2-dependent mechanisms. Furthermore, treatment with TGF-ß increased Bmal1 in cultured murine proximal tubular cells. Knockdown of Bmal1 abolished, while overexpression of Bmal1 increased, Gli2 and the expression of fibrosis-related genes. Collectively, these results revealed a prominent role of the core clock gene Bmal1 in tubulointerstitial fibrosis. Moreover, we identified Gli2 as a novel target of Bmal1, which may mediate the adverse effect of Bmal1 in obstructive nephropathy.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Fibrose/prevenção & controle , Regulação da Expressão Gênica , Nefropatias/prevenção & controle , Proteínas Circadianas Period/fisiologia , Proteína Gli2 com Dedos de Zinco/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
15.
Anticancer Drugs ; 33(1): 1-5, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232945

RESUMO

Long noncoding RNAs (lncRNAs) are one of the interesting fields in cancer researches. LncRNAs are generally dysregulated in many diseases. LMCD1 antisense RNA 1 (LMCD1-AS1) is a newly identified lncRNA with protumorigenic functions on tumor cells. LMCD1-AS1 expression is increased in hepatocellular carcinoma (HCC). LMCD1-AS1 is a sponge of miR-106b-5p activity. LMCD1-AS1 modulates the survival of osteosarcoma via targeting miR-106b-5p. LMCD1-AS1 and Sp1 are highly expressed in osteosarcoma. SP1 can bind to the promoter region of LMCD1-AS1, resulting in its overexpression in osteosarcoma. GLI2 is shown to bind to the LMCD1-AS1 promoter and is transcriptionally activated by LMCD1-AS1. LMCD1 acts as a miR-1287-5p sponge to increase GLI2 expression. LMCD1 is abundantly expressed in kidney tissue. Moreover, it is functionally involved in protein-protein interactions with transcriptional co-repressor activity, including regulation of the calcineurin-NFAT signaling cascade known to play a critical role in recovery from acute kidney injury (AKI). The E2F1/LMCD1-AS1/miR-345-5p/COL6A3 axis is a newly identified regulatory mechanism, which has a function in cholangiocarcinoma (CCA) tumorigenesis and progression and provides potential therapeutic targets for CCA. Also, LMCD1-AS1 functions in thyroid cancer (THCA) development. LMCD1-AS1 is overexpressed in THCA cells, and LMCD1-AS1 knockdown suppresses the malignant phenotypes of THCA cells. In THCA development, LMCD1-AS1 exerts protumorigenic function through sponging miR-1287-5p to increase GLI2 expression, constituting a feedback loop of LMCD1-AS1/miR-1287-5p/GLI2. In this review, the author focuses on the molecular mechanisms of newly identified long noncoding RNA LMCD1 antisense RNA 1 (LMCD1-AS1).


Assuntos
Proteínas Correpressoras/metabolismo , Proteínas com Domínio LIM/metabolismo , MicroRNAs/metabolismo , Neoplasias/patologia , RNA Antissenso/metabolismo , RNA Longo não Codificante/metabolismo , Injúria Renal Aguda/patologia , Calcineurina/metabolismo , Carcinogênese/metabolismo , Humanos , Imunoglobulinas/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais/fisiologia , Proteína Gli2 com Dedos de Zinco/metabolismo
16.
Nucleic Acids Res ; 48(13): 7169-7181, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32544250

RESUMO

The modulation of GLI2, an oncogenic transcription factor commonly upregulated in cancer, is in many cases not due to genetic defects, suggesting dysregulation through alternative mechanisms. The identity of these molecular events remains for the most part unknown. Here, we identified TFII-I as a novel repressor of GLI2 expression. Mapping experiments suggest that the INR region of the GLI2 promoter is necessary for GLI2 repression. ChIP studies showed that TFII-I binds to this INR. TFII-I knockdown decreased the binding of NELF-A, a component of the promoter-proximal pausing complex at this site, and enriched phosphorylated RNAPII serine 2 in the GLI2 gene body. Immunoprecipitation studies demonstrate TFII-I interaction with SPT5, another pausing complex component. TFII-I overexpression antagonized GLI2 induction by TGFß, a known activator of GLI2 in cancer cells. TGFß reduced endogenous TFII-I binding to the INR and increased RNAPII SerP2 in the gene body. We demonstrate that this regulatory mechanism is not exclusive of GLI2. TGFß-induced genes CCR7, TGFß1 and EGR3 showed similar decreased TFII-I and NELF-A INR binding and increased RNAPII SerP2 in the gene body post-TGFß treatment. Together these results identify TFII-I as a novel repressor of a subset of TGFß-responsive genes through the regulation of RNAPII pausing.


Assuntos
Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Células Hep G2 , Humanos , Regiões Promotoras Genéticas , Proteínas Repressoras/fisiologia , Transcrição Gênica , Ativação Transcricional
17.
Carcinogenesis ; 42(8): 1100-1109, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34117865

RESUMO

Uncontrolled activation of the Hedgehog (Hh) signaling pathway, operating through GLI transcription factors, plays a central role in the pathogenesis of cutaneous basal cell carcinoma and contributes to the development of several malignancies arising in extracutaneous sites. We now report that K5-tTA;tetO-Gli2 bitransgenic mice develop distinctive epithelial tumors within their jaws. These tumors consist of large masses of highly proliferative, monomorphous, basaloid cells with scattered foci of keratinization and central necrosis, mimicking human basaloid squamous cell carcinoma (BSCC), an aggressive upper aerodigestive tract tumor. Like human BSCC, these tumors express epidermal basal keratins and differentiation-specific keratins within squamous foci. Mouse BSCCs express high levels of Gli2 and Hh target genes, including Gli1 and Ptch1, which we show are also upregulated in a subset of human BSCCs. Mouse BSCCs appear to arise from distinct epithelial sites, including the gingival junctional epithelium and epithelial rests of Malassez, a proposed stem cell compartment. Although Gli2 transgene expression is restricted to epithelial cells, we also detect striking alterations in bone adjacent to BSCCs, with activated osteoblasts, osteoclasts and osteal macrophages, indicative of active bone remodeling. Gli2 transgene inactivation resulted in rapid BSCC regression and reversal of the bone remodeling phenotype. This first-reported mouse model of BSCC supports the concept that uncontrolled Hh signaling plays a central role in the pathogenesis of a subset of human BSCCs, points to Hh/GLI2 signaling as a potential therapeutic target and provides a powerful new tool for probing the mechanistic underpinnings of tumor-associated bone remodeling.


Assuntos
Remodelação Óssea , Carcinoma de Células Escamosas/patologia , Proteínas Hedgehog/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Cutâneas/patologia , Proteína Gli2 com Dedos de Zinco/metabolismo , Animais , Carcinoma de Células Escamosas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Cutâneas/metabolismo
18.
Carcinogenesis ; 42(10): 1223-1231, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34546340

RESUMO

Bortezomib-based chemotherapy represents the most prevalent regimens for multiple myeloma (MM), whereas acquired drug resistance remains a major obstacle. Myeloma cells often produce excessive amount of dickkopf-1 (DKK1), giving rise to myeloma bone disease. However, it remains obscure about the effects and mechanisms of DKK1 in the progression and bortezomib responsiveness of MM cells. In the current study, we found WWP2, an E3 ubiquitin-protein ligase, was downregulated in the bortezomib-resistant cells along with high expression of DKK1. Further investigation revealed that WWP2 was a direct target of Wnt/ß-catenin signaling pathway, and DKK1 suppressed the expression of WWP2 via canonical Wnt signaling. We further identified that WWP2 mediated the ubiquitination and degradation of GLI2, a main transcriptional factor of the Hedgehog (Hh) pathway. Therefore, DKK1-induced WWP2 downregulation improved GLI2 stability and activation of Hh signaling pathway, contributing to the resistance to bortezomib of MM cells. Clinical data also validated that WWP2 expression was associated with the treatment response and clinic outcomes of MM patients. WWP2 overexpression restricted MM progression and enhanced cell sensitivity to bortezomib treatment in vitro and in vivo. Taken together, our findings demonstrate that DKK1 facilitates the generation of bortezomib resistance in MM via downregulating WWP2 and activating Hh pathway. Thus, the manipulation of DKK1-WWP2-GLI2 axis might sensitize myeloma cells to proteasome inhibitors.


Assuntos
Antineoplásicos/uso terapêutico , Bortezomib/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Mieloma Múltiplo/tratamento farmacológico , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Mieloma Múltiplo/metabolismo , Resultado do Tratamento , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação , Via de Sinalização Wnt
19.
Dev Biol ; 462(2): 119-128, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169553

RESUMO

Arl13b is a gene known to regulate ciliogenesis. Functional alterations in this gene's activity have been associated with Joubert syndrome. We found that in Arl13 null mouse embryos the orientation of the optic cup is inverted, such that the lens is abnormally surrounded by an inverted optic cup whose retina pigmented epithelium is oddly facing the surface ectoderm. Loss of Arl13b leads to the disruption of optic vesicle's patterning and expansion of ventral fates. We show that this phenotype is consequence of miss-regulation of Sonic hedgehog (Shh) signaling and demonstrate that the Arl13b-/- eye phenotype can be rescued by deletion of Gli2, a downstream effector of the Shh pathway. This work identified an unexpected role of primary cilia during the morphogenetic movements required for the formation of the eye.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Cílios/metabolismo , Olho/embriologia , Fatores de Ribosilação do ADP/genética , Animais , Padronização Corporal/genética , Proteína Morfogenética Óssea 4/metabolismo , Cílios/genética , Desenvolvimento Embrionário , Olho/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Cristalino/embriologia , Cristalino/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfogênese , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Organogênese , Epitélio Pigmentado da Retina/embriologia , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/genética , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Homeobox SIX3
20.
J Cell Biochem ; 122(5): 577-597, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33417295

RESUMO

Breast cancer continues to be a serious public health problem. The role of the hedgehog pathway in normal development of the mammary gland as well as in carcinogenesis and progression of breast cancer is the subject of intense investigation, revealing functional interactions with cell surface heparan sulfate. Nevertheless, its influence on breast cancer prognosis, and its relation to specific sulfation motifs in heparan sulfate have only been poorly studied in large patient cohorts. Using the public database KMplotter that includes gene expression and survival data of 3951 patients, we found that the higher expression of SHH, HHAT, PTCH1, GLI1, GLI2, and GLI3 positively influences breast cancer prognosis. Stratifying patients according to the expression of hormone receptors, histological grade, lymph node metastasis, and systemic therapy, we observed that GLI1, GLI2, and GLI3 expression, as well as co-expression of SHH and ELP1 were associated with worse relapse-free survival in patients with HER2-positive tumors. Moreover, GLI1 expression in progesterone receptor-negative tumors and GLI3 expression in grade 3 tumors correlated with poor prognosis. SHH, in a panel of cell lines representing different breast cancer subtypes, and HHAT, PTCH1, GLI1, GLI2, and GLI3 were mostly expressed in cell lines classified as HER2-positive and basal-like. Expression of SHH, HHAT, GLI2, and GLI3 was differentially affected by overexpression of the heparan sulfate sulfotransferases HS2ST1 and HS3ST2 in vitro. Although high HS2ST1 expression was associated with poor prognosis in KMplotter analysis, high levels of HS3ST2 were associated with a good prognosis, except for ER-positive breast cancer. We suggest the GLI transcription factors as possible markers for the diagnosis, treatment, and prognosis of breast cancer especially in HER2-positive tumors, but also in progesterone receptor-negative and grade-3 tumors. The pathway interaction and prognostic impact of specific heparan sulfate sulfotransferases provide novel perspectives regarding a therapeutical targeting of the hedgehog pathway in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas Hedgehog/metabolismo , Feminino , Heparitina Sulfato , Humanos , Proteínas do Tecido Nervoso/metabolismo , Receptor Patched-1/metabolismo , Prognóstico , Fatores de Elongação da Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA