Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Pathol ; 250(2): 170-182, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31610014

RESUMO

Accumulating evidence links Fusobacterium nucleatum with ulcerative colitis (UC). The mechanism by which F. nucleatum promotes intestinal inflammation in UC remains poorly defined. Here, we first examined the abundance and impact of F. nucleatum on disease activity in UC tissues. Next, we isolated a strain of F. nucleatum from UC tissues and explored whether F. nucleatum aggravates the intestinal inflammatory response in vitro and in vivo. We also examined whether F. nucleatum infection involves the NF-κB or IL-17F signaling pathways. Our data showed that F. nucleatum was enriched in 51.78% of UC tissues and was correlated with the clinical course, clinical activity and refractory behavior of UC (p < 0.05). Furthermore, we demonstrated that F. nucleatum promoted intestinal epithelial damage and the expression of the inflammatory cytokines IL-1ß, Il-6, IL-17F and TNF-α. Mechanistically, F. nucleatum targeted caspase activation and recruitment domain 3 (CARD3) through NOD2 to activate the IL-17F/NF-κB pathway in vivo and in vitro. Thus, F. nucleatum orchestrates a molecular network involving CARD3 and IL-17F to control the UC process. Measuring and targeting F. nucleatum and its associated pathways will yield valuable insight into the prevention and treatment of UC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Colite Ulcerativa/microbiologia , Infecções por Fusobacterium/complicações , Fusobacterium nucleatum/patogenicidade , Interleucina-17/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/biossíntese , Adolescente , Adulto , Idoso , Animais , Estudos de Casos e Controles , Células Cultivadas , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Infecções por Fusobacterium/metabolismo , Fusobacterium nucleatum/isolamento & purificação , Humanos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , NF-kappa B/metabolismo , RNA Mensageiro/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/deficiência , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/fisiologia , Índice de Gravidade de Doença , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Adulto Jovem
2.
J Biol Chem ; 294(26): 10365-10378, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31113864

RESUMO

Receptor-interacting protein 2 (RIP2) is a kinase that mediates signaling downstream of the bacterial peptidoglycan sensors NOD1 and NOD2. Genetic loss or pharmaceutical inhibition of RIP2 has been shown to be beneficial in multiple inflammatory disease models with the effects largely attributed to reducing proinflammatory signaling downstream of peptidoglycan recognition. However, given the widespread expression of this kinase and its reported interactions with numerous other proteins, it is possible that RIP2 may also function in roles outside of peptidoglycan sensing. In this work, we show that RIP2 undergoes tyrosine phosphorylation and activation in response to engagement of the Fc γ receptor (FcγR). Using bone marrow-derived macrophages from WT and RIP2-KO mice, we show that loss of RIP2 leads to deficient FcγR signaling and reactive oxygen species (ROS) production upon FcγR cross-linking without affecting cytokine secretion, phagocytosis, or nitrate/nitrite production. The FcγR-induced ROS response was still dependent on NOD2, as macrophages deficient in this receptor showed similar defects. Mechanistically, we found that different members of the Src family kinases (SFKs) can promote RIP2 tyrosine phosphorylation and activation. Altogether, our findings suggest that RIP2 is functionally important in pathways outside of bacterial peptidoglycan sensing and that involvement in such pathways may depend on the actions of SFKs. These findings will have important implications for future therapies designed to target this kinase.


Assuntos
Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/fisiologia , Receptores de IgG/metabolismo , Animais , Citocinas/metabolismo , Imunidade Inata/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Fosforilação , Receptores de IgG/genética , Transdução de Sinais
3.
Osteoarthritis Cartilage ; 23(9): 1575-85, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25917637

RESUMO

OBJECTIVE: This study aimed to identify the key intracellular pattern recognition receptor (PRR) and its role in the unbalanced extracellular matrix gene expressions of chondrocytes treated by T-2 toxin, a potential etiological factor for cartilage damages. DESIGN: Differential expressions of intracellular PRRs after T-2 toxin treatment were screened by RT-qPCR in chondrocytes. RNAi was used to knockdown the expression of NOD2 and its two downstream signal molecules, RIPK2, and TBK1, for observing the effects of NOD2 pathway on regulation of metabolism gene expressions by RT-qPCR. The matrix metalloproteinases (MMP) activity was determined by gelatin zymography. The inhibitor of NF-κB and ROS scavenger were exploited to analyze the mechanism of NOD2 up-regulation in chondrocytes treated with T-2 toxin. RESULTS: In chondrocytes treated with T-2 toxin, anabolism genes were down-regulated whereas catabolism genes were up-regulated, and NOD2 was identified as a significantly up-regulated gene. Intervening NOD2 expression via RNAi could ameliorate the down-regulation of anabolism genes, while inhibit the up-regulation of catablolism genes induced by T-2 toxin in chondrocytes. RNAi of RIPK2 and TBK1 in chondrocytes could obtain the similar outcome. Furthermore, up-regulation of NOD2 expression induced by T-2 toxin could be abrogated by pretreating the cells with inhibitors of NF-κB and scavenger of ROS. CONCLUSION: T-2 toxin could up-regulate NOD2 expression via ROS/NF-κB pathway and activate NOD2 signaling pathway. The up-regulated NOD2 would affect the metabolism gene expressions and MMP activity in chondrocytes via RIPK2 and TBK1. The findings add new insights into understanding NOD2 effects on chondrocytes treated with T-2 toxin.


Assuntos
Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Proteína Adaptadora de Sinalização NOD2/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/fisiologia , Receptores de Reconhecimento de Padrão/análise , Receptores de Reconhecimento de Padrão/fisiologia , Toxina T-2/farmacologia , Animais , Western Blotting , Células Cultivadas , Regulação para Baixo , Matriz Extracelular/genética , Expressão Gênica , Vetores Genéticos , Metaloproteinases da Matriz/metabolismo , Metabolismo/genética , NF-kappa B/antagonistas & inibidores , Proteína Adaptadora de Sinalização NOD2/análise , RNA Mensageiro/análise , RNA Interferente Pequeno , Ratos , Transdução Genética , Regulação para Cima
4.
EMBO J ; 27(2): 373-83, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18079694

RESUMO

Nod1 and Nod2 are intracellular proteins that are involved in host recognition of specific bacterial molecules and are genetically associated with several inflammatory diseases. Nod1 and Nod2 stimulation activates NF-kappaB through RICK, a caspase-recruitment domain-containing kinase. However, the mechanism by which RICK activates NF-kappaB in response to Nod1 and Nod2 stimulation is unknown. Here we show that RICK is conjugated with lysine-63-linked polyubiquitin chains at lysine 209 (K209) located in its kinase domain upon Nod1 or Nod2 stimulation and by induced oligomerization of RICK. Polyubiquitination of RICK at K209 was essential for RICK-mediated IKK activation and cytokine/chemokine secretion. However, RICK polyubiquitination did not require the kinase activity of RICK or alter the interaction of RICK with NEMO, a regulatory subunit of IkappaB kinase (IKK). Instead, polyubiquitination of RICK was found to mediate the recruitment of TAK1, a kinase that was found to be essential for Nod1-induced signaling. Thus, RICK polyubiquitination links TAK1 to IKK complexes, a critical step in Nod1/Nod2-mediated NF-kappaB activation.


Assuntos
NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Sítios de Ligação/genética , Linhagem Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Proteínas de Ligação a DNA , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Luciferases/genética , Luciferases/metabolismo , Lisina/genética , Lisina/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Modelos Biológicos , Mutação , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/fisiologia , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 5 Associado a Receptor de TNF/genética , Fator 5 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Transfecção , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ubiquitinação
5.
Cytokine ; 58(3): 415-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22484241

RESUMO

The anti-inflammatory actions of IL-4 in activated human monocytes may reflect transcriptional regulation of genes involved in TLR signaling pathways. Tailored gene arrays were conducted to profile the expression of 84 genes central to TLR-mediated signal transduction in human monocytes treated with the TLR4 ligand, LPS, with or without IL-4. In the first 3h, IL-4 down-regulated mRNA levels of LPS-induced inflammatory cytokines and chemokines, without altering mRNA levels of TLRs, TLR-related signaling molecules or multiple transcription factors. The down-regulation of inflammatory genes by IL-4 was preceded by an early up-regulation of IL-10 mRNA and protein and mRNA for receptor-interacting serine-threonine kinase 2 (RIPK2), the TLR homolog, RP105, and c-Maf, a transcription factor required for IL-10 gene expression. However, IL-4 still suppressed LPS-induced TNFα production in bone-marrow derived macrophages from IL10(-/-) mice, and in the presence of a neutralizing antibody to IL-10 in human monocytes. The up-regulation of RIPK2 and RP105 mRNA by IL-4 occurred independently of IL-10. IL-4 maintained the ability to suppress LPS-induced TNFα and enhance IL-10 production in the presence of RIPK2 kinase inhibitors. Further, IL-4 failed to up-regulate expression of RP105 at the cell surface. In conclusion, the anti-inflammatory actions of IL-4 occur independently of IL-10, RP105, and the kinase activity of RIPK2.


Assuntos
Antígenos CD/fisiologia , Inflamação/prevenção & controle , Interleucina-10/fisiologia , Interleucina-4/fisiologia , Monócitos/fisiologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/fisiologia , Animais , Sequência de Bases , Primers do DNA , Citometria de Fluxo , Humanos , Interleucina-10/genética , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
6.
Mol Cancer Ther ; 19(6): 1340-1350, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32371577

RESUMO

Most patients with osteosarcoma have subclinical pulmonary micrometastases at diagnosis. Mounting evidence suggests that macrophages facilitate metastasis. As the EGFR has been implicated in carcinoma-macrophage cross-talk, in this study, we asked whether gefitinib, an EGFR inhibitor, reduces osteosarcoma invasion and metastatic outgrowth using the K7M2-Balb/c syngeneic murine model. Macrophages enhanced osteosarcoma invasion in vitro, which was suppressed by gefitinib. Oral gefitinib inhibited tumor extravasation in the lung and reduced the size of metastatic foci, resulting in reduced metastatic burden. Gefitinib also altered pulmonary macrophage phenotype, increasing MHCII and decreasing CD206 expression compared with controls. Surprisingly, these effects are mediated through inhibition of macrophage receptor interacting protein kinase 2 (RIPK2), rather than EGFR. Supporting this, lapatinib, a highly specific EGFR inhibitor that does not inhibit RIPK2, had no effect on macrophage-promoted invasion, and RIPK2-/- macrophages failed to promote invasion. The selective RIPK2 inhibitor WEHI-345 blocked tumor cell invasion in vitro and reduced metastatic burden in vivo In conclusion, our results indicate that gefitinib blocks macrophage-promoted invasion and metastatic extravasation by reprogramming macrophages through inhibition of RIPK2.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Gefitinibe/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Macrófagos/metabolismo , Osteossarcoma/tratamento farmacológico , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Proliferação de Células , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Invasividade Neoplásica , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/fisiologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Endocrinology ; 161(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32473019

RESUMO

Tyrosine kinase inhibitors (TKIs) used in cancer are also being investigated in diabetes. TKIs can improve blood glucose control in diabetic cancer patients, but the specific kinases that alter blood glucose or insulin are not clear. We sought to define the role of Receptor Interacting Serine/Threonine Kinase 2 (RIPK2) in mouse models of insulin resistance. We tested the TKI gefitinib, which inhibits RIPK2 activity, in wild-type (WT), Nod1-/-, Nod2-/-, and Ripk2-/- mice fed an obesogenic high-fat diet. Gefitinib lowered blood glucose during a glucose tolerance test (GTT) in a nucleotide-binding oligomerization domain (NOD)-RIPK2-independent manner in all obese mice. However, gefitinib lowered glucose-stimulated insulin secretion only in obese Ripk2-/- mice. Gefitinib had no effect on insulin secretion in obese WT, Nod1-/-, or Nod2-/- mice. Hence, genetic deletion of Ripk2 promoted the insulin-sensitizing potential of gefitinib, since this TKI lowered both blood glucose and insulin only in Ripk2-/- mice. Gefitinib did not alter the inflammatory profile of pancreas, adipose, liver, or muscle tissues in obese Ripk2-/- mice compared with obese WT mice. We also tested imatinib, a TKI that does not inhibit RIPK2 activity, in obese WT mice. Imatinib lowered blood glucose during a GTT, consistent with TKIs lowering blood glucose independently of RIPK2. However, imatinib increased glucose-stimulated insulin secretion during the glucose challenge. These data show that multiple TKIs lower blood glucose, where actions of TKIs on RIPK2 dictate divergent insulin responses, independent of tissue inflammation. Our data show that RIPK2 limits the insulin sensitizing effect of gefitinib, whereas imatinib increased insulin secretion.


Assuntos
Secreção de Insulina/efeitos dos fármacos , Secreção de Insulina/genética , Obesidade/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/fisiologia , Adiposidade/efeitos dos fármacos , Adiposidade/genética , Animais , Glicemia/efeitos dos fármacos , Glicemia/genética , Glicemia/metabolismo , Dieta Hiperlipídica , Gefitinibe/farmacologia , Insulina/metabolismo , Resistência à Insulina/genética , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Proteína Adaptadora de Sinalização NOD1/fisiologia , Proteína Adaptadora de Sinalização NOD2/fisiologia , Obesidade/etiologia , Obesidade/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
8.
J Leukoc Biol ; 94(5): 927-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23794710

RESUMO

The role of NOD2 and RIP2 in inflammatory disease has been paradoxical. Whereas loss-of-function NOD2 polymorphisms cause CD, a granulomatous disease of the gastrointestinal tract, gain-of-function mutations cause EOS-a granulomatous disease primarily affecting the skin, joints, and eyes. Thus, gain-of-function mutations and loss-of-function polymorphisms cause granulomatous inflammatory disease, only in different anatomic locations. The situation is complicated further by the fact that WT NOD2 and WT RIP2 activity has been implicated in diseases such as asthma, inflammatory arthritis and MS. This article reviews the role that the NOD2:RIP2 complex plays in inflammatory disease, with an emphasis on the inhibition of this signaling pathway as a novel pharmaceutical target in inflammatory disease.


Assuntos
Inflamação/etiologia , Proteína Adaptadora de Sinalização NOD2/fisiologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/fisiologia , Animais , Humanos , Inflamação/tratamento farmacológico , Proteína Adaptadora de Sinalização NOD2/genética , Polimorfismo Genético , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Transdução de Sinais/fisiologia
9.
J Immunol ; 179(1): 514-21, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17579072

RESUMO

Mesothelial cells that line the serous cavities and outer surface of internal organs are involved in inflammatory responses induced by microbial stimuli and bacterial infection. Upon exposure to bacterial products, mesothelial cells secrete chemokines, but the signaling pathways by which these cells recognize bacteria to mediate innate immune responses remain largely unknown. We report that stimulation of primary peritoneal mesothelial cells via nucleotide-binding oligomerization domain (Nod)1, a member of the intracytoplasmic Nod-like receptor family, induced potent secretion of the chemokines CXCL1 and CCL2 as well as expression of inducible NO synthase and such responses required the kinase RICK. Mesothelial cells also produced chemokines in response to TLR2, TLR3, TLR4, and TLR5 agonists, but unlike that induced by Nod1 stimulation, the TLR-mediated responses were independent of RICK. Yet, Nod1 stimulation of mesothelial cells via RICK enhanced chemokine secretion induced by LPS or IFN-gamma and cooperated with IFN-gamma in the production of NO. The i.p. administration of KF1B, a synthetic Nod1 agonist, elicited chemokine production in the serum and peritoneal fluid as well as the recruitment of neutrophils into the peritoneal cavity of wild-type mice, but not RICK-deficient mice. Finally, infection of mesothelial cells with Listeria monocytogenes induced production of CXCL1 and this response was significantly reduced in Nod1- or RICK-deficient cells. These results define mesothelial cells as microbial sensors through TLRs and Nod-like receptors and identify Nod1 and RICK as important mediators of chemokine and antimicrobial responses in mesothelial cells.


Assuntos
Quimiocinas/biossíntese , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Proteína Adaptadora de Sinalização NOD1/fisiologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/fisiologia , Receptores Toll-Like/fisiologia , Animais , Líquido Ascítico/enzimologia , Líquido Ascítico/imunologia , Líquido Ascítico/metabolismo , Líquido Ascítico/microbiologia , Quimiocina CCL2/biossíntese , Quimiocina CCL2/metabolismo , Quimiocina CXCL1 , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocinas CXC/biossíntese , Quimiocinas CXC/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Imunidade Inata/genética , Rim/enzimologia , Rim/imunologia , Rim/metabolismo , Rim/microbiologia , Fígado/enzimologia , Fígado/imunologia , Fígado/metabolismo , Fígado/microbiologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Infiltração de Neutrófilos/imunologia , Óxido Nítrico Sintase Tipo II/biossíntese , Proteína Adaptadora de Sinalização NOD1/agonistas , Proteína Adaptadora de Sinalização NOD1/deficiência , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/deficiência , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Baço/enzimologia , Baço/imunologia , Baço/metabolismo , Baço/microbiologia , Receptores Toll-Like/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA