Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 639
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37314175

RESUMO

Cytokinesis is the last step of cell division, when one cell physically divides into two cells. Cytokinesis is driven by an equatorial contractile ring and signals from antiparallel microtubule bundles (the central spindle) that form between the two masses of segregating chromosomes. Bundling of central spindle microtubules is essential for cytokinesis in cultured cells. Using a temperature-sensitive mutant of SPD-1, the homolog of the microtubule bundler PRC1, we demonstrate that SPD-1 is required for robust cytokinesis in the Caenorhabditis elegans early embryo. SPD-1 inhibition results in broadening of the contractile ring, creating an elongated intercellular bridge between sister cells at the last stages of ring constriction that fails to seal. Moreover, depleting anillin/ANI-1 in SPD-1-inhibited cells results in myosin loss from the contractile ring during the second half of furrow ingression, which in turn results in furrow regression and cytokinesis failure. Our results thus reveal a mechanism involving the joint action of anillin and PRC1, which operates during the later stages of furrow ingression to ensure continued functioning of the contractile ring until cytokinesis is complete.


Assuntos
Proteínas de Caenorhabditis elegans , Citocinese , Animais , Proteínas Contráteis/genética , Miosinas , Microtúbulos , Caenorhabditis elegans , Proteínas dos Microfilamentos , Proteínas de Caenorhabditis elegans/genética
2.
Am J Physiol Cell Physiol ; 326(3): C990-C998, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314725

RESUMO

Multiple techniques have been developed to isolate contractile smooth muscle cells (SMCs) from tissues with varying degrees of success. However, most of these approaches rely on obtaining fresh tissue, which poses logistical challenges. In the present study, we introduce a novel protocol for isolating contractile SMCs from cryopreserved smooth muscle (SM) tissue, thereby enhancing experimental efficiency. This protocol yields abundant viable, spindle-shaped, contractile SMCs that closely resemble those obtained from fresh samples. By analyzing the expression of contractile proteins, we demonstrate that both the isolated SMCs from cryopreserved tissue represent more accurately fresh SM tissue compared with cultured SMCs. Moreover, we demonstrate the importance of a brief incubation step of the tissue in culture medium before cell dissociation to achieve contractile SMCs. Finally, we provide a concise overview of our protocol optimization efforts, along with a summary of previously published methods, which could be valuable for the development of similar protocols for other species.NEW & NOTEWORTHY We report a successful protocol development for isolating contractile smooth muscle cells (SMCs) from cryopreserved tissue reducing the reliance on fresh tissues and providing a readily available source of contractile SMCs. Our findings suggest that SMCs isolated using our protocol maintain their phenotype better compared with cultured SMCs. This preservation of the cellular characteristics, including the expression of key contractile proteins, makes these cells more representative of fresh SM tissue.


Assuntos
Contração Muscular , Miócitos de Músculo Liso , Miócitos de Músculo Liso/metabolismo , Músculo Liso/metabolismo , Fenótipo , Proteínas Contráteis/genética , Proteínas Contráteis/metabolismo , Células Cultivadas , Diferenciação Celular/genética
3.
Circ Res ; 129(12): e215-e233, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34702049

RESUMO

RATIONALE: Vascular smooth muscle cells (SMCs) exhibit remarkable plasticity and can undergo dedifferentiation upon pathological stimuli associated with disease and interventions. OBJECTIVE: Although epigenetic changes are critical in SMC phenotype switching, a fundamental regulator that governs the epigenetic machineries regulating the fate of SMC phenotype has not been elucidated. METHODS AND RESULTS: Using SMCs, mouse models, and human atherosclerosis specimens, we found that FAK (focal adhesion kinase) activation elicits SMC dedifferentiation by stabilizing DNMT3A (DNA methyltransferase 3A). FAK in SMCs is activated in the cytoplasm upon serum stimulation in vitro or vessel injury and active FAK prevents DNMT3A from nuclear FAK-mediated degradation. However, pharmacological or genetic FAK catalytic inhibition forced FAK nuclear localization, which reduced DNMT3A protein via enhanced ubiquitination and proteasomal degradation. Reduced DNMT3A protein led to DNA hypomethylation in contractile gene promoters, which increased SMC contractile protein expression. RNA-sequencing identified SMC contractile genes as a foremost upregulated group by FAK inhibition from injured femoral artery samples compared with vehicle group. DNMT3A knockdown in injured arteries reduced DNA methylation and enhanced contractile gene expression supports the notion that nuclear FAK-mediated DNMT3A degradation via E3 ligase TRAF6 (TNF [tumor necrosis factor] receptor-associated factor 6) drives differentiation of SMCs. Furthermore, we observed that SMCs of human atherosclerotic lesions exhibited decreased nuclear FAK, which was associated with increased DNMT3A levels and decreased contractile gene expression. CONCLUSIONS: This study reveals that nuclear FAK induced by FAK catalytic inhibition specifically suppresses DNMT3A expression in injured vessels resulting in maintaining SMC differentiation by promoting the contractile gene expression. Thus, FAK inhibitors may provide a new treatment option to block SMC phenotypic switching during vascular remodeling and atherosclerosis.


Assuntos
Desdiferenciação Celular , Proteínas Contráteis/genética , Metilação de DNA , Quinase 1 de Adesão Focal/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Células Cultivadas , Proteínas Contráteis/metabolismo , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo , Quinase 1 de Adesão Focal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Proteólise , Ubiquitinação , Regulação para Cima
4.
Exp Cell Res ; 402(1): 112525, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662366

RESUMO

Cells dividing in the plane of epithelial tissues proceed by polarized constriction of the actomyosin contractile ring, leading to asymmetric ingression of the plasma mem brane. Asymmetric cytokinesis results in the apical positioning of the actomyosin contractile ring and ultimately of the midbody. Studies have indicated that the contractile ring is associated with adherens junctions, whose role is to maintain epithelial tissue cohesion. However, it is yet unknown when the contractile ring becomes associated with adherens junctions in epithelial cells. Here, we examined contractile ring formation and activation in the epithelium of Xenopus embryos and explored the implication of adherens junctions in the contractile ring formation. We show that accumulation of proteins involved in contractile ring formation and activation is polarized, starting at apical cell-cell contacts at the presumptive division site and spreading within seconds towards the cell basal side. We also show that adherens junctions are involved in the kinetics of contractile ring formation. Our study reveals that the link between the adherens junctions and the contractile ring is established from the onset of cytokinesis.


Assuntos
Junções Aderentes/genética , Desenvolvimento Embrionário/genética , Células Epiteliais/metabolismo , Xenopus laevis/genética , Citoesqueleto de Actina/genética , Actomiosina/genética , Animais , Divisão Celular/genética , Polaridade Celular/genética , Proteínas Contráteis/genética , Citocinese/genética , Embrião não Mamífero , Células Epiteliais/citologia , Xenopus laevis/crescimento & desenvolvimento
5.
Proc Natl Acad Sci U S A ; 116(9): 3594-3603, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808751

RESUMO

The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the Dictyostelium model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many forA- /E-/H- and racE- mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics.


Assuntos
Citoesqueleto de Actina/genética , Proteínas de Transporte/genética , Proteínas Contráteis/genética , Melanoma Experimental/genética , Citoesqueleto de Actina/química , Actinas/genética , Animais , Sistemas CRISPR-Cas , Movimento Celular/genética , Polaridade Celular/genética , Proteínas Contráteis/química , Dictyostelium/genética , Modelos Animais de Doenças , Forminas , Humanos , Melanoma Experimental/patologia , Camundongos , Microscopia Eletrônica , Contração Muscular/genética , Proteína rhoA de Ligação ao GTP/química , Proteína rhoA de Ligação ao GTP/genética
6.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555638

RESUMO

Ovarian cancer (OC) is usually diagnosed late due to its nonspecific symptoms and lack of reliable tools for early diagnostics and screening. OC studies concentrate on the search for new biomarkers and therapeutic targets. This study aimed to validate the MFAP5 gene, and its encoded protein, as a potential prognostic biomarker. In our previous study, we found that patients with high-grade serous OC who had higher MFAP5 mRNA levels had shorter survival, as compared with those with lower levels. Here, we used the Kaplan-Meier Plotter and CSIOVDB online tools to analyze possible associations of MFAP5 expression with survival and other clinico-pathological features. In these analyses, higher MFAP5 mRNA expression was observed in the more advanced FIGO stages and high-grade tumors, and was significantly associated with shorter overall and progression-free survival. Next, we analyzed the expression of the MFAP5 protein by immunohistochemistry (IHC) in 108 OC samples and tissue arrays. Stronger MFAP5 expression was associated with stronger desmoplastic reaction and serous vs. non-serous histology. We found no significant correlation between IHC results and survival, although there was a trend toward shorter survival in patients with the highest IHC scores. We searched for co-expressed genes/proteins using cBioPortal and analyzed potential MFAP5 interaction networks with the STRING tool. MFAP5 was shown to interact with many extracellular matrix proteins, and was connected to the Notch signaling pathway. Therefore, although not suitable as a prognostic biomarker for evaluation with a simple diagnostic tool like IHC, MFAP5 is worth further studies as a possible therapeutic target.


Assuntos
Proteínas Contráteis , Neoplasias Ovarianas , Humanos , Feminino , Proteínas Contráteis/genética , Microfibrilas/metabolismo , Prognóstico , Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , RNA Mensageiro/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
7.
Mol Med ; 27(1): 153, 2021 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-34865619

RESUMO

BACKGROUND: Dysfunctional osteogenesis of bone marrow mesenchymal stem cells (BMSCs) plays an important role in osteoporosis occurrence and development. However, the molecular mechanisms of osteogenic differentiation remain unclear. This study explored whether microfibrillar-associated protein 5 (MFAP5) regulated BMSCs osteogenic differentiation. METHODS: We used shRNA or cDNA to knock down or overexpress MFAP5 in C3H10 and MC3T3-E1 cells. AR-S- and ALP-staining were performed to quantify cellular osteogenic differentiation. The mRNA levels of the classical osteogenic differentiation biomarkers Runx2, Col1α1, and OCN were quantified by qRT-PCR. Finally, we employed Western blotting to measure the levels of Wnt/ß-catenin and AMPK signaling proteins. RESULTS: At days 0, 3, 7, and 14 after osteogenic induction, AR-S- and ALP-staining was lighter in MFAP5 knockdown compared to control cells, as were the levels of Runx2, Col1α1 and OCN. During osteogenesis, the levels of ß-catenin, p-GSK-3ß, AMPK, and p-AMPK were upregulated, while that of GSK-3ß was downregulated, indicating that Wnt/ß-catenin and AMPK signaling were activated. The relevant molecules were expressed at lower levels in the knockdown than control group; the opposite was seen for overexpressing cell lines. CONCLUSIONS: MFAP5 regulates osteogenesis via Wnt/ß­catenin- and AMPK-signaling; MFAP5 may serve as a therapeutic target in patients with osteoporosis.


Assuntos
Proteínas Contráteis/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Osteogênese/genética , Osteoporose/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Proteínas Contráteis/metabolismo , Feminino , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
8.
Physiol Genomics ; 52(10): 492-511, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926651

RESUMO

Skeletal muscles can undergo atrophy and/or programmed cell death (PCD) during development or in response to a wide range of insults, including immobility, cachexia, and spinal cord injury. However, the protracted nature of atrophy and the presence of multiple cell types within the tissue complicate molecular analyses. One model that does not suffer from these limitations is the intersegmental muscle (ISM) of the tobacco hawkmoth Manduca sexta. Three days before the adult eclosion (emergence) at the end of metamorphosis, the ISMs initiate a nonpathological program of atrophy that results in a 40% loss of mass. The ISMs then generate the eclosion behavior and initiate a nonapoptotic PCD during the next 30 h. We have performed a comprehensive transcriptomics analysis of all mRNAs and microRNAs throughout ISM development to better understand the molecular mechanisms that mediate atrophy and death. Atrophy involves enhanced protein catabolism and reduced expression of the genes involved in respiration, adhesion, and the contractile apparatus. In contrast, PCD involves the induction of numerous proteases, DNA methylases, membrane transporters, ribosomes, and anaerobic metabolism. These changes in gene expression are largely repressed when insects are injected with the insect steroid hormone 20-hydroxyecdysone, which delays death. The expression of the death-associated proteins may be greatly enhanced by reductions in specific microRNAs that function to repress translation. This study not only provides fundamental new insights into basic developmental processes, it may also represent a powerful resource for identifying potential diagnostic markers and molecular targets for therapeutic intervention.


Assuntos
Apoptose/genética , Genes de Insetos , Manduca/genética , Atrofia Muscular/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Contráteis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , MicroRNAs/genética , Contração Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , RNA Mensageiro/genética
9.
Mol Microbiol ; 112(6): 1718-1730, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515877

RESUMO

The flagellated eukaryote Trypanosoma brucei alternates between the insect vector and the mammalian host and proliferates through an unusual mode of cell division. Cell division requires flagellum motility-generated forces, but flagellum motility exerts distinct effects between different life cycle forms. Motility is required for the final cell abscission of the procyclic form in the insect vector, but is necessary for the initiation of cell division of the bloodstream form in the mammalian host. The underlying mechanisms remain elusive. Here we carried out functional analyses of a flagellar axonemal inner-arm dynein complex in the bloodstream form and investigated its mechanistic role in cytokinesis initiation. We showed that the axonemal inner-arm dynein heavy chain TbIAD5-1 and TbCentrin3 form a complex, localize to the flagellum, and are required for viability in the bloodstream form. We further demonstrated the interdependence between TbIAD5-1 and TbCentrin3 for maintenance of protein stability. Finally, we showed that depletion of TbIAD5-1 and TbCentrin3 arrested cytokinesis initiation and disrupted the localization of multiple cytokinesis initiation regulators. These findings identified the essential role of an axonemal inner-arm dynein complex in cell division, and provided molecular insights into the flagellum motility-mediated cytokinesis initiation in the bloodstream form of T. brucei.


Assuntos
Dineínas do Axonema/metabolismo , Proteínas Contráteis/metabolismo , Citocinese/fisiologia , Proteínas de Protozoários/metabolismo , Dineínas do Axonema/fisiologia , Axonema/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Linhagem Celular , Movimento Celular , Proteínas Contráteis/genética , Proteínas Contráteis/fisiologia , Dineínas/metabolismo , Dineínas/fisiologia , Flagelos/metabolismo , Flagelos/fisiologia , Estágios do Ciclo de Vida , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Interferência de RNA , Trypanosoma brucei brucei/metabolismo
10.
Development ; 144(24): 4563-4572, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29122839

RESUMO

Alveologenesis, the final step of lung development, is characterized by the formation of millions of alveolar septa that constitute the vast gas-exchange surface area. The genetic network driving alveologenesis is poorly understood compared with earlier steps in lung development. FGF signaling through receptors Fgfr3 and Fgfr4 is crucial for alveologenesis, but the mechanisms through which they mediate this process remain unclear. Here we show that in Fgfr3;Fgfr4 (Fgfr3;4) global mutant mice, alveolar simplification is first observed at the onset of alveologenesis at postnatal day 3. This is preceded by disorganization of elastin, indicating defects in the extracellular matrix (ECM). Although Fgfr3 and Fgfr4 are expressed in the mesenchyme and epithelium, inactivation in the mesenchyme, but not the epithelium, recapitulated the defects. Expression analysis of components of the elastogenesis machinery revealed that Mfap5 (also known as Magp2), which encodes an elastin-microfibril bridging factor, is upregulated in Fgfr3;4 mutants. Mfap5 mutation in the Fgfr3;4 mutant background partially attenuated the alveologenesis defects. These data demonstrate that, during normal lung maturation, FGF signaling restricts expression of the elastogenic machinery in the lung mesenchyme to control orderly formation of the elastin ECM, thereby driving alveolar septa formation to increase the gas-exchange surface.


Assuntos
Proteínas Contráteis/biossíntese , Proteínas da Matriz Extracelular/biossíntese , Organogênese/fisiologia , Alvéolos Pulmonares/embriologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Proteínas Contráteis/genética , Epitélio/metabolismo , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/genética , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Alvéolos Pulmonares/citologia , Fatores de Processamento de RNA , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/fisiologia
11.
Fungal Genet Biol ; 144: 103439, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768603

RESUMO

In this research we report that the sepG1 mutation in Aspergillus nidulans resides in gene AN9463, which is predicted to encode an IQGAP orthologue. The genetic lesion is predicted to result in a G-to-R substitution at residue 1637 of the 1737-residue protein in a highly conserved region of the RasGAP-C-terminal (RGCT) domain. When grown at restrictive temperature, strains expressing the sepGG1637R (sepG1) allele are aseptate, with reduced colony growth and aberrantly formed conidiophores. The aseptate condition can be replicated by deletion of AN9463 or by downregulating its expression via introduced promoters. The mutation does not prevent assembly of a cortical contractile actomyosin ring (CAR) at putative septation sites, but tight compaction of the rings is impaired and the rings fail to constrict. Both GFP::SepG wild type and the GFP-tagged product of the sepG1 allele localize to the CAR at both permissive and restrictive temperatures. Downregulation of myoB (encoding the A. nidulans type-II myosin heavy chain) does not prevent formation of SepG rings at septation sites, but filamentous actin is required for CAR localization of SepG and MyoB. We identify fourteen probable IQ-motifs (EF-hand protein binding sites) in the predicted SepG sequence. Two of the A. nidulans EF-hand proteins, myosin essential light chain (AnCdc4) and myosin regulatory light chain (MrlC), colocalize with SepG and MyoB at all stages of CAR formation and constriction. However, calmodulin (CamA) appears at septation sites only after the CAR has become fully compacted. When expression of sepG is downregulated, leaving MyoB as the sole IQ-motif protein in the pre-compaction CAR, both MrlC and AnCdc4 continue to associate with the forming CAR. When myoB expression is downregulated, leaving SepG as the sole IQ-motif protein in the CAR, AnCdc4 association with the forming CAR continues but MrlC fails to associate. This supports a model in which the IQ motifs of MyoB bind both MrlC and AnCdc4, while the IQ motifs of SepG bind only AnCdc4. Downregulation of either mrlC or Ancdc4 results in an aseptate phenotype, but has no effect on association of either SepG or MyoB with the CAR.


Assuntos
Actomiosina/genética , Aspergillus nidulans/genética , Proteínas Contráteis/genética , Proteínas Ativadoras de ras GTPase/genética , Citoesqueleto de Actina/genética , Sítios de Ligação , Calmodulina/genética , Constrição , Citocinese/genética , Mutação/genética , Cadeias Leves de Miosina/genética , Miosina Tipo II/genética , Ligação Proteica/genética
12.
Mol Psychiatry ; 24(4): 501-522, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30755720

RESUMO

We endeavored to identify objective blood biomarkers for pain, a subjective sensation with a biological basis, using a stepwise discovery, prioritization, validation, and testing in independent cohorts design. We studied psychiatric patients, a high risk group for co-morbid pain disorders and increased perception of pain. For discovery, we used a powerful within-subject longitudinal design. We were successful in identifying blood gene expression biomarkers that were predictive of pain state, and of future emergency department (ED) visits for pain, more so when personalized by gender and diagnosis. MFAP3, which had no prior evidence in the literature for involvement in pain, had the most robust empirical evidence from our discovery and validation steps, and was a strong predictor for pain in the independent cohorts, particularly in females and males with PTSD. Other biomarkers with best overall convergent functional evidence for involvement in pain were GNG7, CNTN1, LY9, CCDC144B, and GBP1. Some of the individual biomarkers identified are targets of existing drugs. Moreover, the biomarker gene expression signatures were used for bioinformatic drug repurposing analyses, yielding leads for possible new drug candidates such as SC-560 (an NSAID), and amoxapine (an antidepressant), as well as natural compounds such as pyridoxine (vitamin B6), cyanocobalamin (vitamin B12), and apigenin (a plant flavonoid). Our work may help mitigate the diagnostic and treatment dilemmas that have contributed to the current opioid epidemic.


Assuntos
Dor/tratamento farmacológico , Dor/genética , Medicina de Precisão/métodos , Adulto , Idoso , Biomarcadores/sangue , Biomarcadores Farmacológicos/sangue , Biologia Computacional/métodos , Proteínas Contráteis/genética , Proteínas Contráteis/metabolismo , Reposicionamento de Medicamentos/métodos , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Transcriptoma/genética
13.
Endocr J ; 67(8): 819-825, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32321883

RESUMO

Pregnant women with obesity are at increased risk of parturition dysfunction; however, the biological mechanism has remained unknown. We hypothesized that molecules circulating in the serum of pregnant women with obesity may induce the aberrant expression of contraction-associated proteins (CAPs), leading to insufficient uterine contractions. This study aimed to investigate the effects of maternal serum on CAPs expression by human uterine smooth muscle cells (UtSMCs) and elucidate the influence of maternal obesity. Blood samples were collected from singleton pregnant women at 36-41 weeks of gestation before the onset of labor. UtSMCs were incubated in the serum, and the mRNA expressions of PTGFR, OXTR, GJA1, and PTGS2 were examined by RT-PCR. Progranulin (PGRN) is a circulating glycoprotein associated with insulin resistance characterized by the accumulation of visceral fat. The serum PGRN levels of the samples were measured by ELISA. After incubated with PGRN (100-1,000 ng/mL), mRNA expression of PTGFR, OXTR, and GJA1 and protein expression of CX43 were examined by RT-PCR and western blotting, respectively. The mRNA expressions of PTGFR, OXTR, and GJA1 showed significantly negative correlations with gestational weight gain (GWG). Serum PGRN levels showed a significantly positive correlation with GWG. High levels of PGRN suppressed the mRNA expression of GJA1 and the protein expression of CX43. The change in maternal serum induced by GWG suppressed the CAPs expression by UtSMCs. PGRN is one of the factors in the serum responsible for inhibiting the expression of CX43.


Assuntos
Proteínas Contráteis/genética , Ganho de Peso na Gestação , Miócitos de Músculo Liso/metabolismo , Progranulinas/fisiologia , Útero/metabolismo , Adulto , Células Cultivadas , Proteínas Contráteis/metabolismo , Meios de Cultivo Condicionados/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Ganho de Peso na Gestação/genética , Ganho de Peso na Gestação/fisiologia , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Parto/sangue , Parto/metabolismo , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Complicações na Gravidez/fisiopatologia , Progranulinas/sangue , Progranulinas/farmacologia , Soro/fisiologia , Contração Uterina/genética , Contração Uterina/metabolismo , Útero/citologia
14.
Int J Mol Sci ; 21(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422910

RESUMO

Actomyosin-mediated contractility is required for the majority of force-driven cellular events such as cell division, adhesion, and migration. Under pathological conditions, the role of actomyosin contractility in malignant phenotypes of various solid tumors has been extensively discussed, but the pathophysiological relevance in hematopoietic malignancies has yet to be elucidated. In this study, we found enhanced actomyosin contractility in diverse acute myeloid leukemia (AML) cell lines represented by highly expressed non-muscle myosin heavy chain A (NMIIA) and increased phosphorylation of the myosin regulatory light chain. Genetic and pharmacological inhibition of actomyosin contractility induced multivalent malignancy- suppressive effects in AML cells. In this context, perturbed actomyosin contractility enhances AML cell apoptosis through cytokinesis failure and aryl hydrocarbon receptor activation. Moreover, leukemic oncogenes were downregulated by the YAP/TAZ-mediated mechanotransduction pathway. Our results provide a theoretical background for targeting actomyosin contractility to suppress the malignancy of AML cells.


Assuntos
Actomiosina/genética , Proteínas Contráteis/genética , Leucemia Mieloide Aguda/genética , Cadeias Pesadas de Miosina/genética , Citoesqueleto de Actina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adesão Celular/genética , Divisão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Leucemia Mieloide Aguda/patologia , Mecanotransdução Celular/genética , Fosforilação , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
15.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066548

RESUMO

Cholangiocarcinoma (CCA) is associated with high mortality rates because of its resistance to conventional gemcitabine-based chemotherapy. Hydroxy-methyl-glutaryl-coenzyme A reductase inhibitors (statins) reportedly exert anti-cancer effects in CCA and lower the risk of CCA; however, the underlying mechanism of these effects remains unclear. The proliferative and oncogenic activities of the transcriptional co-activator Yes-associated protein (YAP) are driven by its association with the TEA domain (TEAD) of transcription factors; thereby, upregulating genes that promote cell growth, inhibit apoptosis, and confer chemoresistance. This study investigated the effects of atorvastatin in combination with gemcitabine on the progression of human CCA associated with YAP oncogenic regulation. Both atorvastatin and gemcitabine concentration-dependently suppressed the proliferation of HuCCT-1 and KKU-M213 human CCA cells. Moreover, both agents induced cellular apoptosis by upregulating the pro-apoptotic marker BAX and downregulating the anti-apoptotic markers MCL1 and BCL2. Atorvastatin also significantly decreased the mRNA expression of the TEAD target genes CTGF, CYR61, ANKRD1, and MFAP5 in both CCA cell lines. A xenograft tumor growth assay indicated that atorvastatin and gemcitabine potently repressed human CCA cell-derived subcutaneous tumor growth by inhibiting YAP nuclear translocation and TEAD transcriptional activation. Notably, the anti-cancer effects of the individual agents were significantly enhanced in combination. These results indicate that gemcitabine plus atorvastatin could serve as a potential novel treatment option for CCA.


Assuntos
Anticolesterolemiantes/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Atorvastatina/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Desoxicitidina/análogos & derivados , Proteínas Proto-Oncogênicas c-yes/metabolismo , Animais , Anticolesterolemiantes/administração & dosagem , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Atorvastatina/administração & dosagem , Neoplasias dos Ductos Biliares/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteínas Contráteis/genética , Proteínas Contráteis/metabolismo , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Combinação de Medicamentos , Interações Medicamentosas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Gencitabina
16.
Am J Respir Cell Mol Biol ; 61(4): 512-524, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30951642

RESUMO

Inflammation and vascular smooth muscle cell (VSMC) phenotypic switching are causally linked to pulmonary arterial hypertension (PAH) pathogenesis. Carbonic anhydrase inhibition induces mild metabolic acidosis and exerts protective effects in hypoxic pulmonary hypertension. Carbonic anhydrases and metabolic acidosis are further known to modulate immune cell activation. To evaluate if carbonic anhydrase inhibition modulates macrophage activation, inflammation, and VSMC phenotypic switching in severe experimental pulmonary hypertension, pulmonary hypertension was assessed in Sugen 5416/hypoxia (SU/Hx) rats after treatment with acetazolamide or ammonium chloride (NH4Cl). We evaluated pulmonary and systemic inflammation and characterized the effect of carbonic anhydrase inhibition and metabolic acidosis in alveolar macrophages and bone marrow-derived macrophages (BMDMs). We further evaluated the treatment effects on VSMC phenotypic switching in pulmonary arteries and pulmonary artery smooth muscle cells (PASMCs) and corroborated some of our findings in lungs and pulmonary arteries of patients with PAH. Both patients with idiopathic PAH and SU/Hx rats had increased expression of lung inflammatory markers and signs of PASMC dedifferentiation in pulmonary arteries. Acetazolamide and NH4Cl ameliorated SU/Hx-induced pulmonary hypertension and blunted pulmonary and systemic inflammation. Expression of carbonic anhydrase isoform 2 was increased in alveolar macrophages from SU/Hx animals, classically (M1) and alternatively (M2) activated BMDMs, and lungs of patients with PAH. Carbonic anhydrase inhibition and acidosis had distinct effects on M1 and M2 markers in BMDMs. Inflammatory cytokines drove PASMC dedifferentiation, and this was inhibited by acetazolamide and acidosis. The protective antiinflammatory effect of acetazolamide in pulmonary hypertension is mediated by a dual mechanism of macrophage carbonic anhydrase inhibition and systemic metabolic acidosis.


Assuntos
Acetazolamida/uso terapêutico , Cloreto de Amônio/uso terapêutico , Inibidores da Anidrase Carbônica/uso terapêutico , Anidrases Carbônicas/fisiologia , Hipertensão Pulmonar/tratamento farmacológico , Acidose/induzido quimicamente , Acidose/complicações , Acidose/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proteínas Contráteis/biossíntese , Proteínas Contráteis/genética , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipóxia/complicações , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/enzimologia , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Isoformas de Proteínas/antagonistas & inibidores , Artéria Pulmonar/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley
17.
Semin Cell Dev Biol ; 67: 141-152, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27641825

RESUMO

Human tissues are remarkably adaptable and robust, harboring the collective ability to detect and respond to external stresses while maintaining tissue integrity. Following injury, many tissues have the capacity to repair the damage - and restore form and function - by deploying cellular and molecular mechanisms reminiscent of developmental programs. Indeed, it is increasingly clear that cancer and chronic conditions that develop with age arise as a result of cells and tissues re-implementing and deregulating a selection of developmental programs. Therefore, understanding the fundamental molecular mechanisms that drive cell and tissue responses is a necessity when designing therapies to treat human conditions. Extracellular matrix stiffness synergizes with chemical cues to drive single cell and collective cell behavior in culture and acts to establish and maintain tissue homeostasis in the body. This review will highlight recent advances that elucidate the impact of matrix mechanics on cell behavior and fate across these length scales during times of homeostasis and in disease states.


Assuntos
Neoplasias da Mama/genética , Caderinas/genética , Proteínas Contráteis/genética , Células Epiteliais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Mecanotransdução Celular , Adaptação Fisiológica , Animais , Fenômenos Biomecânicos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/metabolismo , Proteínas Contráteis/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Adesões Focais/ultraestrutura , Regulação da Expressão Gênica , Homeostase , Humanos , Glândulas Mamárias Humanas/citologia , Estresse Mecânico
18.
J Neurophysiol ; 121(4): 1491-1500, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785807

RESUMO

The functional state of denervated muscle is a critical factor in the ability to restore movement after injury- or disease-related paralysis. Here we used peripheral optogenetic stimulation and transcriptome profiling in the mouse whisker system to investigate the time course of changes in neuromuscular function following complete unilateral facial nerve transection. While most skeletal muscles rapidly lose functionality after lower motor neuron denervation, optogenetic muscle stimulation of the paralyzed whisker pad revealed sustained increases in the sensitivity, velocity, and amplitude of whisker movements, and reduced fatigability, starting 48 h after denervation. RNA-seq analysis showed distinct regulation of multiple gene families in denervated whisker pad muscles compared with the atrophy-prone soleus, including prominent changes in ion channels and contractile fibers. Together, our results define the unique functional and transcriptomic landscape of denervated facial muscles and have general implications for restoring movement after neuromuscular injury or disease. NEW & NOTEWORTHY Optogenetic activation of muscle can be used to noninvasively induce movements and probe muscle function. We used this technique in mice to investigate changes in whisker movements following facial nerve transection. We found unexpectedly enhanced functional properties of whisker pad muscle following denervation, accompanied by unique transcriptomic changes. Our findings highlight the utility of the mouse whisker pad for investigating the restoration of movement after paralysis.


Assuntos
Músculo Esquelético/metabolismo , Transcriptoma , Vibrissas/metabolismo , Animais , Proteínas Contráteis/genética , Proteínas Contráteis/metabolismo , Feminino , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Camundongos , Denervação Muscular , Fadiga Muscular , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Optogenética , Vibrissas/inervação , Vibrissas/fisiologia
19.
Mol Phylogenet Evol ; 132: 25-35, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30496843

RESUMO

Peritrichia is a large and distinctive assemblage of ciliated protists that was first observed by Antonie van Leeuwenhoek over 340 years ago. In the last two decades the evolutionary relationships of this subclass have been increasingly debated as morphological and molecular analyses have generated contrasting conclusions. In this study, we provide genomic-scale data from 12 typical representatives. We combine taxon- and gene-rich phylogenomic analyses, with up to 151 genes (43,956 amino acid residues) from 18 freshwater, brackish and marine isolates in order to assess the systematics and evolutionary history of the Peritrichia. The main findings were: (1) the subclass Peritrichia originates from the end of the Proterozoic to the Cambrian; (2) the monophyletic Peritrichia is sister to the Peniculia (represented by Paramecium) within the class Oligohymenophorea; (3) spasmin plays a significant role in peritrich evolution: we detected the spasmin gene in target ciliates and traced the molecular evolution of spasmin, a key spasmoneme component, together with phylogenetic relationships and morphology of the peritrichs. These findings provide evidence that spasmin is an important molecule to illustrate the phylogenetic position of Peritrichia within the class Oligohymenophorea, the monophyly of Peritrichia, and the diverse and rapid evolution of sessilid peritrichs.


Assuntos
Oligoimenóforos/classificação , Oligoimenóforos/genética , Filogenia , Proteínas Contráteis/genética , Evolução Molecular , Variação Genética , Genômica , Proteínas de Protozoários/genética , Especificidade da Espécie , Fatores de Tempo
20.
Angiogenesis ; 21(2): 349-361, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29417260

RESUMO

Endothelial cell proliferation is a key process during vascular growth but its kinetics could only be assessed in vitro or ex vivo so far. To enable the monitoring and quantification of cell cycle kinetics in vivo, we have generated transgenic mice expressing an eGFP-anillin construct under control of the endothelial-specific Flt-1 promoter. This construct labels the nuclei of endothelial cells in late G1, S and G2 phase and changes its localization during the different stages of M phase, thereby enabling the monitoring of EC proliferation and cytokinesis. In Flt-1/eGFP-anillin mice, we found eGFP+ signals specifically in Ki67+/PECAM+ endothelial cells during vascular development. Quantification using this cell cycle reporter in embryos revealed a decline in endothelial cell proliferation between E9.5 to E12.5. By time-lapse microscopy, we determined the length of different cell cycle phases in embryonic endothelial cells in vivo and found a M phase duration of about 80 min with 2/3 covering karyokinesis and 1/3 cytokinesis. Thus, we have generated a versatile transgenic system for the accurate assessment of endothelial cell cycle dynamics in vitro and in vivo.


Assuntos
Ciclo Celular , Proteínas Contráteis/metabolismo , Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proteínas Contráteis/genética , Embrião de Mamíferos/citologia , Células Endoteliais/citologia , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA