Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7969): 385-393, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407816

RESUMO

The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , DNA , Histonas , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/genética , DNA/metabolismo , Sequências Hélice-Alça-Hélice/genética , Histonas/química , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação Alostérica , Zíper de Leucina , Fator 3 de Transcrição de Octâmero/metabolismo , Multimerização Proteica
2.
Proc Natl Acad Sci U S A ; 121(25): e2322452121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861600

RESUMO

Intrinsically disordered proteins (IDPs) play a crucial role in various biological phenomena, dynamically changing their conformations in response to external environmental cues. To gain a deeper understanding of these proteins, it is essential to identify the determinants that fix their structures at the atomic level. Here, we developed a pipeline for rapid crystal structure analysis of IDP using a cell-free protein crystallization (CFPC) method. Through this approach, we successfully demonstrated the determination of the structure of an IDP to uncover the key determinants that stabilize its conformation. Specifically, we focused on the 11-residue fragment of c-Myc, which forms an α-helix through dimerization with a binding partner protein. This fragment was strategically recombined with an in-cell crystallizing protein and was expressed in a cell-free system. The resulting crystal structures of the c-Myc fragment were successfully determined at a resolution of 1.92 Å and we confirmed that they are identical to the structures of the complex with the native binding partner protein. This indicates that the environment of the scaffold crystal can fix the structure of c-Myc. Significantly, these crystals were obtained directly from a small reaction mixture (30 µL) incubated for only 72 h. Analysis of eight crystal structures derived from 22 mutants revealed two hydrophobic residues as the key determinants responsible for stabilizing the α-helical structure. These findings underscore the power of our CFPC screening method as a valuable tool for determining the structures of challenging target proteins and elucidating the essential molecular interactions that govern their stability.


Assuntos
Sistema Livre de Células , Cristalização , Proteínas Intrinsicamente Desordenadas , Proteínas Proto-Oncogênicas c-myc , Proteínas Intrinsicamente Desordenadas/química , Cristalografia por Raios X/métodos , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Humanos , Conformação Proteica , Modelos Moleculares , Ligação Proteica
3.
Nucleic Acids Res ; 52(16): 9397-9406, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39077944

RESUMO

G-quadruplex (G4) structures play integral roles in modulating biological functions and can be regulated by small molecules. The MYC gene is critical during tumor initiation and malignant progression, in which G4 acts as an important modulation motif. Herein, we reported the MYC promoter G4 recognized by a platinum(II) compound Pt-phen. Two Pt-phen-MYC G4 complex structures in 5 mM K+ were determined by NMR. The Pt-phen first strongly binds the 3'-end of MYC G4 to form a 1:1 3'-end binding complex and then binds 5'-end to form a 2:1 complex with more Pt-phen. In the complexes, the Pt-phen molecules are well-defined and stack over four bases at the G-tetrad for a highly extensive π-π interaction, with the Pt atom aligning with the center of the G-tetrad. The flanking residues were observed to rearrange and cover on top of Pt-phen to stabilize the whole complex. We further demonstrated that Pt-phen targets G4 DNA in living cells and represses MYC gene expression in cancer cells. Our work elucidated the structural basis of ligand binding to MYC promoter G4. The platinum compound bound G4 includes multiple complexes formation, providing insights into the design of metal ligands targeting oncogene G4 DNA.


Assuntos
Quadruplex G , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc , Quadruplex G/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/química , DNA/química , DNA/metabolismo , Compostos de Platina/química , Genes myc , Platina/química
4.
Genes Dev ; 32(21-22): 1398-1419, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366908

RESUMO

The transcription factor MYC (also c-Myc) induces histone modification, chromatin remodeling, and the release of paused RNA polymerase to broadly regulate transcription. MYC is subject to a series of post-translational modifications that affect its stability and oncogenic activity, but how these control MYC's function on the genome is largely unknown. Recent work demonstrates an intimate connection between nuclear compartmentalization and gene regulation. Here, we report that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression. We demonstrate that PIN1-mediated localization of MYC to the nuclear pore regulates MYC target genes responsive to mitogen stimulation that are involved in proliferation and migration pathways. These changes are also present at the chromatin level, with an increase in open regulatory elements in response to stimulation that is PIN1-dependent and associated with MYC chromatin binding. Taken together, our study indicates that post-translational modification of MYC controls its spatial activity to optimally regulate gene expression in response to extrinsic signals in normal and diseased states.


Assuntos
Poro Nuclear/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ativação Transcricional , Animais , Linhagem Celular , Células Cultivadas , Cromatina/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mitógenos/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-myc/química , Serina/metabolismo , Cicatrização , Fatores de Transcrição de p300-CBP/metabolismo
5.
Methods ; 230: 9-20, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39032720

RESUMO

Guanine-rich nucleic acids can form intramolecularly folded four-stranded structures known as G-quadruplexes (G4s). Traditionally, G4 research has focused on short, highly modified DNA or RNA sequences that form well-defined homogeneous compact structures. However, the existence of longer sequences with multiple G4 repeats, from proto-oncogene promoters to telomeres, suggests the potential for more complex higher-order structures with multiple G4 units that might offer selective drug-targeting sites for therapeutic development. These larger structures present significant challenges for structural characterization by traditional high-resolution methods like multi-dimensional NMR and X-ray crystallography due to their molecular complexity. To address this current challenge, we have developed an integrated structural biology (ISB) platform, combining experimental and computational methods to determine self-consistent molecular models of higher-order G4s (xG4s). Here we outline our ISB method using two recent examples from our lab, an extended c-Myc promoter and long human telomere G4 repeats, that highlights the utility and generality of our approach to characterizing biologically relevant xG4s.


Assuntos
Quadruplex G , Regiões Promotoras Genéticas , Proto-Oncogene Mas , Humanos , Telômero/química , Telômero/genética , Modelos Moleculares , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/química , DNA/química , Ressonância Magnética Nuclear Biomolecular/métodos , Espectroscopia de Ressonância Magnética/métodos
6.
Mol Cell ; 67(4): 566-578.e10, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28803781

RESUMO

50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps. First, chromatin is repositioned away from the nuclear periphery in response to global acetylation. Second, histone nanodomain clusters decompact into mononucleosome fibers through a mechanism that requires Myc and continual energy input. Single-molecule imaging shows that this step lowers transcription factor residence time and non-specific collisions during sampling for DNA targets. Third, chromatin interactions shift from long range to predominantly short range, and CTCF-mediated loops and contact domains double in numbers. This architectural change facilitates cognate promoter-enhancer contacts and also requires Myc and continual ATP production. Our results thus define the nature and transcriptional impact of chromatin decondensation and reveal an unexpected role for Myc in the establishment of nuclear topology in mammalian cells.


Assuntos
Linfócitos B/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Ativação Linfocitária , Proteínas Proto-Oncogênicas c-myc/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos B/imunologia , Linhagem Celular , Cromatina/química , Cromatina/genética , Metilação de DNA , Epigênese Genética , Genótipo , Histonas/química , Imunidade Humoral , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Conformação de Ácido Nucleico , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Imagem Individual de Molécula , Relação Estrutura-Atividade , Fatores de Tempo , Transcrição Gênica
7.
J Chem Inf Model ; 64(13): 5328-5343, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38635316

RESUMO

Research in the human genome sciences generates a substantial amount of genetic data for hundreds of thousands of individuals, which concomitantly increases the number of variants of unknown significance (VUS). Bioinformatic analyses can successfully reveal rare variants and variants with clear associations with disease-related phenotypes. These studies have had a significant impact on how clinical genetic screens are interpreted and how patients are stratified for treatment. There are few, if any, computational methods for variants comparable to biological activity predictions. To address this gap, we developed a machine learning method that uses protein three-dimensional structures from AlphaFold to predict how a variant will influence changes to a gene's downstream biological pathways. We trained state-of-the-art machine learning classifiers to predict which protein regions will most likely impact transcriptional activities of two proto-oncogenes, nuclear factor erythroid 2 (NFE2L2)-related factor 2 (NRF2) and c-Myc. We have identified classifiers that attain accuracies higher than 80%, which have allowed us to identify a set of key protein regions that lead to significant perturbations in c-Myc or NRF2 transcriptional pathway activities.


Assuntos
Aprendizado de Máquina , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/química , Conformação Proteica , Variação Genética , Genoma Humano , Modelos Moleculares , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Biologia Computacional/métodos
8.
Mol Cell ; 64(4): 774-789, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27840026

RESUMO

For many years, a connection between circadian clocks and cancer has been postulated. Here we describe an unexpected function for the circadian repressor CRY2 as a component of an FBXL3-containing E3 ligase that recruits T58-phosphorylated c-MYC for ubiquitylation. c-MYC is a critical regulator of cell proliferation; T58 is central in a phosphodegron long recognized as a hotspot for mutation in cancer. This site is also targeted by FBXW7, although the full machinery responsible for its turnover has remained obscure. CRY1 cannot substitute for CRY2 in promoting c-MYC degradation. Their unique functions may explain prior conflicting reports that have fueled uncertainty about the relationship between clocks and cancer. We demonstrate that c-MYC is a target of CRY2-dependent protein turnover, suggesting a molecular mechanism for circadian control of cell growth and a new paradigm for circadian protein degradation.


Assuntos
Transformação Celular Neoplásica/genética , Relógios Circadianos/genética , Criptocromos/genética , Proteínas F-Box/genética , Regulação Neoplásica da Expressão Gênica , Linfoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Ritmo Circadiano/genética , Criptocromos/química , Criptocromos/metabolismo , Proteínas Culina/química , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Fibroblastos , Células HEK293 , Humanos , Linfoma/metabolismo , Linfoma/mortalidade , Linfoma/patologia , Camundongos , Camundongos Knockout , Modelos Moleculares , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteólise , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Quinases Associadas a Fase S/química , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais , Análise de Sobrevida
9.
Nucleic Acids Res ; 50(8): 4246-4257, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35412611

RESUMO

Ligand-Induced duplex-quadruplex transition within the c-MYC promoter region is one of the most studied and advanced ideas for c-MYC regulation. Despite its importance, there is a lack of methods for monitoring such process in cells, hindering a better understanding of the essence of c-MYC G-quadruplex as a drug target. Here we developed a new fluorescent probe ISCH-MYC for specific c-MYC G-quadruplex recognition based on GTFH (G-quadruplex-Triggered Fluorogenic Hybridization) strategy. We validated that ISCH-MYC displayed distinct fluorescence enhancement upon binding to c-MYC G-quadruplex, which allowed the duplex-quadruplex transition detection of c-MYC G-rich DNA in cells. Using ISCH-MYC, we successfully characterized the induction of duplex to G-quadruplex transition in the presence of G-quadruplex stabilizing ligand PDS and further monitored and evaluated the altered interactions of relevant transcription factors Sp1 and CNBP with c-MYC G-rich DNA. Thus, our study provides a visualization strategy to explore the mechanism of G-quadruplex stabilizing ligand action on c-MYC G-rich DNA and relevant proteins, thereby empowering future drug discovery efforts targeting G-quadruplexes.


Assuntos
Quadruplex G , Proteínas Proto-Oncogênicas c-myc , DNA/química , DNA/genética , Ligantes , Hibridização de Ácido Nucleico , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética
10.
J Biol Chem ; 298(5): 101898, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378126

RESUMO

Protein-protein interactions drive various biological processes in healthy as well as disease states. The transcription factor c-Myc plays a crucial role in maintaining cellular homeostasis, and its deregulated expression is linked to various human cancers; therefore, it can be considered a viable target for cancer therapeutics. However, the structural heterogeneity of c-Myc due to its disordered nature poses a major challenge to drug discovery. In the present study, we used an in silico alanine scanning mutagenesis approach to identify "hot spot" residues within the c-Myc/Myc-associated factor X interface, which is highly disordered and has not yet been systematically analyzed for potential small molecule binding sites. We then used the information gained from this analysis to screen potential inhibitors using a conformation ensemble approach. The fluorescence-based biophysical experiments showed that the identified hit molecules displayed noncovalent interactions with these hot spot residues, and further cell-based experiments showed substantial in vitro potency against diverse c-Myc-expressing cancer/stem cells by deregulating c-Myc activity. These biophysical and computational studies demonstrated stable binding of the hit compounds with the disordered c-Myc protein. Collectively, our data indicated effective drug targeting of the disordered c-Myc protein via the determination of hot spot residues in the c-Myc/Myc-associated factor X heterodimer.


Assuntos
Descoberta de Drogas , Fator X , Técnicas Genéticas , Proteínas Proto-Oncogênicas c-myc , Fator X/metabolismo , Humanos , Conformação Molecular , Mutagênese , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-myc/química
11.
J Am Chem Soc ; 145(6): 3259-3269, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36734615

RESUMO

The MYC family of oncogenes (MYC, MYCN, and MYCL) encodes a basic helix-loop-helix leucine zipper (bHLHLZ) transcriptional regulator that is responsible for moving the cell through the restriction point. Through the HLHZIP domain, MYC heterodimerizes with the bHLHLZ protein MAX, which enables this MYC-MAX complex to bind to E-box regulatory DNA elements thereby controlling transcription of a large group of genes and their proteins. Translationally, MYC is one of the foremost oncogenic targets, and deregulation of expression of the MYC family gene/proteins occurs in over half of all human tumors and is recognized as a hallmark of cancer initiation and maintenance. Additionally, unexpected roles for this oncoprotein have been found in cancers that nominally have a non-MYC etiology. Although MYC is rarely mutated, its gain of function in cancer results from overexpression or from amplification. Moreover, MYC is a pleiotropic transcription factor possessing broad pathogenic prominence making it a coveted cancer target. A widely held notion within the biomedical research community is that the reliable modulation of MYC represents a tremendous therapeutic opportunity given its role in directly potentiating oncogenesis. However, the MYC-MAX heterodimer interaction contains a large surface area with a lack of well-defined binding sites creating the perception that targeting of MYC-MAX is forbidding. Here, we discuss the biochemistry behind MYC and MYC-MAX as it relates to cancer progression associated with these transcription factors. We also discuss the notion that MYC should no longer be regarded as undruggable, providing examples that a therapeutic window is achievable despite global MYC inhibition.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Neoplasias , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas Proto-Oncogênicas c-myc/química , Fatores de Transcrição/metabolismo , Oncogenes , Neoplasias/tratamento farmacológico , Neoplasias/genética
12.
Mol Cell ; 58(3): 440-52, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25818646

RESUMO

MYC is an oncoprotein transcription factor that is overexpressed in the majority of malignancies. The oncogenic potential of MYC stems from its ability to bind regulatory sequences in thousands of target genes, which depends on interaction of MYC with its obligate partner, MAX. Here, we show that broad association of MYC with chromatin also depends on interaction with the WD40-repeat protein WDR5. MYC binds WDR5 via an evolutionarily conserved "MYC box IIIb" motif that engages a shallow, hydrophobic cleft on the surface of WDR5. Structure-guided mutations in MYC that disrupt interaction with WDR5 attenuate binding of MYC at ∼80% of its chromosomal locations and disable its ability to promote induced pluripotent stem cell formation and drive tumorigenesis. Our data reveal WDR5 as a key determinant for MYC recruitment to chromatin and uncover a tractable target for the discovery of anticancer therapies against MYC-driven tumors.


Assuntos
Carcinogênese/metabolismo , Cromatina/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Anisotropia , Sítios de Ligação/genética , Carcinogênese/genética , Cromatina/química , Cromatina/genética , Polarização de Fluorescência , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Nus , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Células NIH 3T3 , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
13.
Nucleic Acids Res ; 49(10): 5905-5915, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33978746

RESUMO

DNA G-Quadruplexes (G4s) formed in oncogene promoters regulate transcription. The oncogene MYC promoter G4 (MycG4) is the most prevalent G4 in human cancers. However, the most studied MycG4 sequence bears a mutated 3'-residue crucial for ligand recognition. Here, we report a new drug-like small molecule PEQ without a large aromatic moiety that specifically binds MycG4. We determined the NMR solution structures of the wild-type MycG4 and its 2:1 PEQ complex, as well as the structure of the 2:1 PEQ complex of the widely used mutant MycG4. Comparison of the two complex structures demonstrates specific molecular recognition of MycG4 and shows the clear effect of the critical 3'-mutation on the drug binding interface. We performed a systematic analysis of the four available complex structures involving the same mutant MycG4, which can be considered a model system for parallel G4s, and revealed for the first time that the flexible flanking residues are recruited in a conserved and sequence-specific way, as well as unused potential for selective ligand-G4 hydrogen-bond interactions. Our results provide the true molecular basis for MycG4-targeting drugs and new critical insights into future rational design of drugs targeting MycG4 and parallel G4s that are prevalent in promoter and RNA G4s.


Assuntos
Quadruplex G , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/química , Quinolinas/química , Sítios de Ligação , Dicroísmo Circular , Humanos , Ligação de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Terapia de Alvo Molecular , Mutação , Proteínas Proto-Oncogênicas c-myc/genética , Espectrometria de Fluorescência
14.
Nucleic Acids Res ; 49(10): 5943-5955, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33999211

RESUMO

DNA binding proteins recognize DNA specifically or non-specifically using direct and indirect readout mechanisms like sliding, hopping, and diffusion. However, a common difficulty in explicitly elucidating any particular mechanism of site-specific DNA-protein recognition is the lack of knowledge regarding target sequences and inadequate account of non-specific interactions, in general. Here, we decipher the structural basis of target search performed by the key regulator of expression of c-myc proto-oncogene, the human RBMS1 protein. In this study, we have shown the structural reorganization of this multi-domain protein required for recognizing the specific c-myc promoter sequence. The results suggest that a synergy between structural re-organization and thermodynamics is necessary for the recognition of target sequences. The study presents another perspective of looking at the DNA-protein interactions.


Assuntos
Proteínas de Ligação a DNA/química , Genes myc , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Ligação a RNA/química , Sítios de Ligação , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Expressão Gênica , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Proto-Oncogene Mas , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes , Termodinâmica
15.
J Biol Chem ; 296: 100122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33239359

RESUMO

Diabetes results from insufficient numbers of functional pancreatic ß-cells. Thus, increasing the number of available functional ß-cells ex vivo for transplantation, or regenerating them in situ in diabetic patients, is a major focus of diabetes research. The transcription factor, Myc, discovered decades ago lies at the nexus of most, if not all, known proliferative pathways. Based on this, many studies in the 1990s and early 2000s explored the potential of harnessing Myc expression to expand ß-cells for diabetes treatment. Nearly all these studies in ß-cells used pathophysiological or supraphysiological levels of Myc and reported enhanced ß-cell death, dedifferentiation, or the formation of insulinomas if cooverexpressed with Bcl-xL, an inhibitor of apoptosis. This obviously reduced the enthusiasm for Myc as a therapeutic target for ß-cell regeneration. However, recent studies indicate that "gentle" induction of Myc expression enhances ß-cell replication without induction of cell death or loss of insulin secretion, suggesting that appropriate levels of Myc could have therapeutic potential for ß-cell regeneration. Furthermore, although it has been known for decades that Myc is induced by glucose in ß-cells, very little is known about how this essential anabolic transcription factor perceives and responds to nutrients and increased insulin demand in vivo. Here we summarize the previous and recent knowledge of Myc in the ß-cell, its potential for ß-cell regeneration, and its physiological importance for neonatal and adaptive ß-cell expansion.


Assuntos
Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Proliferação de Células , Senescência Celular , Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Células Secretoras de Insulina/citologia , Regiões Promotoras Genéticas , Conformação Proteica , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Relação Estrutura-Atividade
16.
J Biol Chem ; 297(1): 100903, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34157284

RESUMO

c-Myc is a transcription factor that plays a crucial role in cellular homeostasis, and its deregulation is associated with highly aggressive and chemotherapy-resistant cancers. After binding with partner MAX, the c-Myc-MAX heterodimer regulates the expression of several genes, leading to an oncogenic phenotype. Although considered a crucial therapeutic target, no clinically approved c-Myc-targeted therapy has yet been discovered. Here, we report the discovery via computer-aided drug discovery of a small molecule, L755507, which functions as a c-Myc inhibitor to efficiently restrict the growth of diverse Myc-expressing cells with low micromolar IC50 values. L755507 successfully disrupts the c-Myc-MAX heterodimer, resulting in decreased expression of c-Myc target genes. Spectroscopic and computational experiments demonstrated that L755507 binds to the c-Myc peptide and thereby stabilizes the helix-loop-helix conformation of the c-Myc transcription factor. Taken together, this study suggests that L755507 effectively inhibits the c-Myc-MAX heterodimerization and may be used for further optimization to develop a c-Myc-targeted antineoplastic drug.


Assuntos
Antineoplásicos/química , Apoptose/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/química , Antineoplásicos/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Sítios de Ligação , Descoberta de Drogas , Células HT29 , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
17.
Chemistry ; 28(54): e202201497, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35726630

RESUMO

Organometallic molecules offer some of the most promising scaffolds for interaction with G-quadruplex nucleic acids. We report the efficient synthesis of a family of organoplatinum(II) complexes, featuring a 2-([2,2'-bipyridin]-6-yl)phenyl tridentate (N∧ N∧ C) ligand, that incorporates peripheral side-chains aiming at enhancing and diversifying its interaction capabilities. These include a di-isopropyl carbamoyl amide, a morpholine ethylenamide, two enantiomeric proline imides and an oxazole. The binding affinities of the Pt-complexes were evaluated via UV-vis and fluorescence titrations, against 5 topologically-distinct DNA structures, including c-myc G-quadruplex, two telomeric (22AG) G-quadruplexes, a duplex (ds26) and a single-stranded (polyT) DNA. All compounds exhibited binding selectivity in favour of c-myc, with association constants (Ka ) in the range of 2-5×105  M-1 , lower affinity for both folds of 22AG and for ds26 and negligible affinity for polyT. Remarkable emission enhancements (up to 200-fold) upon addition of excess DNA were demonstrated by a subset of the compounds with c-myc, providing a basis for optical selectivity, since optical response to all other tested DNAs was low. A c-myc DNA-melting experiment showed significant stabilizing abilities for all compounds, with the most potent binder, the morpholine-Pt-complex, exhibiting a ΔTm >30 °C, at 1 : 5 DNA-to-ligand molar ratio. The same study implied contributions of the diverse side-chains to helix stabilization. To gain direct evidence of the nature of the interactions, mixtures of c-myc with the four most promising compounds were studied via UV Resonance Raman (UVRR) spectroscopy, which revealed end-stacking binding mode, combined with interactions of side-chains with loop nucleobase residues. Docking simulations were conducted to provide insights into the binding modes for the same four Pt-compounds, suggesting that the binding preference for two alternative orientations of the c-myc G-quadruplex thymine 'cap' ('open' vs. 'closed'), as well as the relative contributions to affinity from end-stacking and H-bonding, are highly dependent on the nature of the interacting Pt-complex side-chain.


Assuntos
Quadruplex G , Radiossensibilizantes , Amidas , DNA/química , Genes myc , Imidas , Ligantes , Morfolinas , Oxazóis , Compostos de Platina , Prolina , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Timina
18.
Proc Natl Acad Sci U S A ; 116(41): 20453-20461, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548374

RESUMO

G-quadruplexes (G4) are noncanonical secondary structures formed in guanine-rich DNA and RNA sequences. MYC, one of the most critical oncogenes, forms a DNA G4 in its proximal promoter region (MycG4) that functions as a transcriptional silencer. However, MycG4 is highly stable in vitro and its regulatory role would require active unfolding. Here we report that DDX5, one of the founding members of the DEAD-box RNA helicase family, is extremely proficient at unfolding MycG4-DNA. Our results show that DDX5 is a highly active G4-resolvase that does not require a single-stranded overhang and that ATP hydrolysis is not directly coupled to G4-unfolding of DDX5. The chromatin binding sites of DDX5 are G-rich sequences. In cancer cells, DDX5 is enriched at the MYC promoter and activates MYC transcription. The DDX5 interaction with the MYC promoter and DDX5-mediated MYC activation is inhibited by G4-interactive small molecules. Our results uncover a function of DDX5 in resolving DNA and RNA G4s and suggest a molecular target to suppress MYC for cancer intervention.


Assuntos
RNA Helicases DEAD-box/química , Quadruplex G , Ácidos Nucleicos/química , Proteínas Proto-Oncogênicas c-myc/química , Linhagem Celular , Cromatina , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica , Humanos , Desdobramento de Proteína , Proteínas Proto-Oncogênicas c-myc/genética
19.
J Biol Chem ; 295(7): 2001-2017, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31919096

RESUMO

The MAX network transcriptional repressor (MNT) is an MXD family transcription factor of the basic helix-loop-helix (bHLH) family. MNT dimerizes with another transcriptional regulator, MYC-associated factor X (MAX), and down-regulates genes by binding to E-boxes. MAX also dimerizes with MYC, an oncogenic bHLH transcription factor. Upon E-box binding, the MYC-MAX dimer activates gene expression. MNT also binds to the MAX dimerization protein MLX (MLX), and MNT-MLX and MNT-MAX dimers co-exist. However, all MNT functions have been attributed to MNT-MAX dimers, and no functions of the MNT-MLX dimer have been described. MNT's biological role has been linked to its function as a MYC oncogene modulator, but little is known about its regulation. We show here that MNT localizes to the nucleus of MAX-expressing cells and that MNT-MAX dimers bind and repress the MNT promoter, an effect that depends on one of the two E-boxes on this promoter. In MAX-deficient cells, MNT was overexpressed and redistributed to the cytoplasm. Interestingly, MNT was required for cell proliferation even in the absence of MAX. We show that in MAX-deficient cells, MNT binds to MLX, but also forms homodimers. RNA-sequencing experiments revealed that MNT regulates the expression of several genes even in the absence of MAX, with many of these genes being involved in cell cycle regulation and DNA repair. Of note, MNT-MNT homodimers regulated the transcription of some genes involved in cell proliferation. The tight regulation of MNT and its functionality even without MAX suggest a major role for MNT in cell proliferation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas Repressoras/genética , Transcrição Gênica , Sequência de Aminoácidos/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Proliferação de Células/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Sequências Hélice-Alça-Hélice/genética , Humanos , Regiões Promotoras Genéticas , Multimerização Proteica/genética , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Repressoras/química
20.
J Biol Chem ; 295(3): 757-770, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31822503

RESUMO

The tumor suppressor protein phosphatase 2A (PP2A) is a serine/threonine phosphatase whose activity is inhibited in most human cancers. One of the best-characterized PP2A substrates is MYC proto-oncogene basic helix-loop-helix transcription factor (MYC), whose overexpression is commonly associated with aggressive forms of this disease. PP2A directly dephosphorylates MYC, resulting in its degradation. To explore the therapeutic potential of direct PP2A activation in a diverse set of MYC-driven cancers, here we used biochemical assays, recombinant cell lines, gene expression analyses, and immunohistochemistry to evaluate a series of first-in-class small-molecule activators of PP2A (SMAPs) in Burkitt lymphoma, KRAS-driven non-small cell lung cancer, and triple-negative breast cancer. In all tested models of MYC-driven cancer, the SMAP treatment rapidly and persistently inhibited MYC expression through proteasome-mediated degradation, inhibition of MYC transcriptional activity, decreased cancer cell proliferation, and tumor growth inhibition. Importantly, we generated a series of cell lines expressing PP2A-dependent phosphodegron variants of MYC and demonstrated that the antitumorigenic activity of SMAPs depends on MYC degradation. Collectively, the findings presented here indicate a pharmacologically tractable approach to drive MYC degradation by using SMAPs for the management of a broad range of MYC-driven cancers.


Assuntos
Proteína Fosfatase 2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Supressoras de Tumor/genética , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteólise/efeitos dos fármacos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/química , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA