RESUMO
One of the open questions in RAS biology is the existence of RAS dimers and their role in RAF dimerization and activation. The idea of RAS dimers arose from the discovery that RAF kinases function as obligate dimers, which generated the hypothesis that RAF dimer formation might be nucleated by G-domain-mediated RAS dimerization. Here, we review the evidence for RAS dimerization and describe a recent discussion among RAS researchers that led to a consensus that the clustering of two or more RAS proteins is not due to the stable association of G-domains but, instead, is a consequence of RAS C-terminal membrane anchors and the membrane phospholipids with which they interact.
Assuntos
Quinases raf , Proteínas ras , Dimerização , Consenso , Proteínas ras/genética , Proteínas ras/metabolismo , Quinases raf/genética , Quinases raf/metabolismo , Lipídeos , Proteínas Proto-Oncogênicas c-raf/metabolismoRESUMO
RAF links RAS, one of the most potent human oncogenes, to its effector ERK and to proliferation. This role is evolutionarily conserved, but while simpler multicellular organisms express one RAF, mammals have three. This Minireview highlights common and divergent features of RAF paralogs, their signaling outputs, and roles in tumorigenesis.
Assuntos
Carcinogênese , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética , Transdução de SinaisRESUMO
Although RAF kinases are critical for controlling cell growth, their mechanism of activation is incompletely understood. Recently, dimerization was shown to be important for activation. Here we show that the dimer is functionally asymmetric with one kinase functioning as an activator to stimulate activity of the partner, receiver kinase. The activator kinase did not require kinase activity but did require N-terminal phosphorylation that functioned allosterically to induce cis-autophosphorylation of the receiver kinase. Based on modeling of the hydrophobic spine assembly, we also engineered a constitutively active mutant that was independent of Ras, dimerization, and activation-loop phosphorylation. As N-terminal phosphorylation of BRAF is constitutive, BRAF initially functions to activate CRAF. N-terminal phosphorylation of CRAF was dependent on MEK, suggesting a feedback mechanism and explaining a key difference between BRAF and CRAF. Our work illuminates distinct steps in RAF activation that function to assemble the active conformation of the RAF kinase.
Assuntos
Quinases raf/química , Quinases raf/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Dimerização , Ativação Enzimática , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Conformação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Alinhamento de Sequência , Triptofano/metabolismo , Quinases raf/genéticaRESUMO
The Ras GTPases are frequently mutated in human cancer, and, although the Raf kinases are essential effectors of Ras signaling, the tumorigenic properties of specific Ras-Raf complexes are not well characterized. Here, we examine the ability of individual Ras and Raf proteins to interact in live cells using bioluminescence resonance energy transfer (BRET) technology. We find that C-Raf binds all mutant Ras proteins with high affinity, whereas B-Raf exhibits a striking preference for mutant K-Ras. This selectivity is mediated by the acidic, N-terminal segment of B-Raf and requires the K-Ras polybasic region for high-affinity binding. In addition, we find that C-Raf is critical for mutant H-Ras-driven signaling and that events stabilizing B-Raf/C-Raf dimerization, such as Raf inhibitor treatment or certain B-Raf mutations, can allow mutant H-Ras to engage B-Raf with increased affinity to promote tumorigenesis, thus revealing a previously unappreciated role for C-Raf in potentiating B-Raf function.
Assuntos
Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Neoplasias/enzimologia , Quinases raf/metabolismo , Proteínas ras/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Mutação , Células NIH 3T3 , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/genética , Esferoides Celulares , Quinases raf/genética , Proteínas ras/genéticaRESUMO
Targeted molecular therapies for cancer treatment have shown promise, but also have limitations. In this issue, Heidorn et al. (2010) find that a class of targeted molecular therapies with clinical effectiveness against one melanoma subtype may have adverse clinical effects in another.
Assuntos
Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Antineoplásicos/efeitos adversos , Linhagem Celular Tumoral , Humanos , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas ras/metabolismoRESUMO
We describe a mechanism of tumorigenesis mediated by kinase-dead BRAF in the presence of oncogenic RAS. We show that drugs that selectively inhibit BRAF drive RAS-dependent BRAF binding to CRAF, CRAF activation, and MEK-ERK signaling. This does not occur when oncogenic BRAF is inhibited, demonstrating that BRAF inhibition per se does not drive pathway activation; it only occurs when BRAF is inhibited in the presence of oncogenic RAS. Kinase-dead BRAF mimics the effects of the BRAF-selective drugs and kinase-dead Braf and oncogenic Ras cooperate to induce melanoma in mice. Our data reveal another paradigm of BRAF-mediated signaling that promotes tumor progression. They highlight the importance of understanding pathway signaling in clinical practice and of genotyping tumors prior to administering BRAF-selective drugs, to identify patients who are likely to respond and also to identify patients who may experience adverse effects.
Assuntos
Antineoplásicos/efeitos adversos , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismoRESUMO
RAF inhibitors unexpectedly induce ERK signaling in normal and tumor cells with elevated RAS activity. Paradoxical activation is believed to be RAS dependent. In this study, we showed that LY3009120, a pan-RAF inhibitor, can unexpectedly cause paradoxical ERK activation in KRASG12C-dependent lung cancer cell lines, when KRAS is inhibited by ARS1620, a KRASG12C inhibitor. Using H/N/KRAS-less mouse embryonic fibroblasts, we discovered that classical RAS proteins are not essential for RAF inhibitor-induced paradoxical ERK signaling. In their absence, RAF inhibitors can induce ERK phosphorylation, ERK target gene transcription, and cell proliferation. We further showed that the MRAS/SHOC2 complex is required for this process. This study highlights the complexity of the allosteric RAF regulation by RAF inhibitors, and the importance of other RAS-related proteins in this process.
Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Quinases raf/antagonistas & inibidores , Proteínas ras/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fibroblastos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Mutação/efeitos dos fármacos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases raf/metabolismo , Proteínas ras/fisiologiaRESUMO
Raf kinases play key roles in signal transduction in cells for regulating proliferation, differentiation, and survival. Despite decades of research into functions and dynamics of Raf kinases with respect to other cytosolic proteins, understanding Raf kinases is limited by the lack of their full-length structures at the atomic resolution. Here, we present the first model of the full-length CRaf kinase obtained from artificial intelligence/machine learning algorithms with a converging ensemble of structures simulated by large-scale temperature replica exchange simulations. Our model is validated by comparing simulated structures with the latest cryo-EM structure detailing close contacts among three key domains and regions of the CRaf. Our simulations identify potentially new epitopes of intramolecule interactions within the CRaf and reveal a dynamical nature of CRaf kinases, in which the three domains can move back and forth relative to each other for regulatory dynamics. The dynamic conformations are then used in a docking algorithm to shed insight into the paradoxical effect caused by vemurafenib in comparison with a paradox breaker PLX7904. We propose a model of Raf-heterodimer/KRas-dimer as a signalosome based on the dynamics of the full-length CRaf.
Assuntos
Proteínas Proto-Oncogênicas c-raf , Transdução de Sinais , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/química , Simulação de Dinâmica Molecular , Domínios Proteicos , Humanos , Multimerização Proteica , Simulação de Acoplamento Molecular , Modelos Moleculares , Vemurafenib/farmacologiaRESUMO
Protein-protein interactions (PPIs) play crucial roles in cellular signaling, transmitting signals from the cell surface to its interior. One of the most important signaling cascades is the RAS-RAF-MEK-ERK pathway. This pathway is initiated by various upstream signaling reactions, including receptor tyrosine kinase (RTK) activation, and it controls many biological functions like cell proliferation, differentiation, and survival. Once RAS is activated, it binds RAF and relays the signal to downstream proteins. The RAS-binding domain (RBD) in RAF protein plays a crucial role in this process, facilitating the RAS-ERK pathway signaling. In this study, we explored the effect of oxidative stress induced by UV radiation on the KRAS-RBD interaction. Using the Split Intein-Mediated Protein Ligation (SIMPL) method, we assessed the impact of different UV doses on KRAS-RBD interactions and observed a disruption of this interaction at higher doses. UV-treated samples exhibited high levels of protein carbonylation, as detected by Oxime Blot and mass spectrometry (MS) analysis, indicating oxidative damage. The MS results provided detailed insights into specific carbonylation modifications on the KRAS protein. Our study demonstrates that protein oxidation and carbonylation can disrupt protein-protein interactions, specifically the KRAS/c-RAF interaction. These findings highlight the impact of oxidative stress on signaling pathways, such as those triggered by UV irradiation. A deeper understanding of these molecular changes may aid in developing therapies targeting diseases linked to oxidative stress, including cancer.
Assuntos
Estresse Oxidativo , Ligação Proteica , Proteínas Proto-Oncogênicas c-raf , Proteínas Proto-Oncogênicas p21(ras) , Raios Ultravioleta , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Humanos , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Carbonilação Proteica/efeitos da radiação , OxirreduçãoRESUMO
The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.
Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Multimerização Proteica , Quinases raf/metabolismo , Quinases raf/química , Animais , Chaperoninas/metabolismo , Chaperoninas/química , Transdução de Sinais , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/química , Modelos MolecularesRESUMO
Epilepsy is a common neurological disorder, and the exploration of potential therapeutic drugs for its treatment is still ongoing. Vitamin D has emerged as a promising treatment due to its potential neuroprotective effects and anti-epileptic properties. This study aimed to investigate the effects of vitamin D on epilepsy and neuroinflammation in juvenile mice using network pharmacology and molecular docking, with a focus on the mammalian target of rapamycin (mTOR) signaling pathway. Experimental mouse models of epilepsy were established through intraperitoneal injection of pilocarpine, and in vitro injury models of hippocampal neurons were induced by glutamate (Glu) stimulation. The anti-epileptic effects of vitamin D were evaluated both in vivo and in vitro. Network pharmacology and molecular docking analysis were used to identify potential targets and regulatory pathways of vitamin D in epilepsy. The involvement of the mTOR signaling pathway in the regulation of mouse epilepsy by vitamin D was validated using rapamycin (RAPA). The levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) were assessed by enzyme-linked immunosorbent assay (ELISA). Gene and protein expressions were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. The terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) staining was used to analyze the apoptosis of hippocampal neurons. In in vivo experiments, vitamin D reduced the Racine scores of epileptic mice, prolonged the latency of epilepsy, and inhibited the production of TNF-α, IL-1ß, and IL-6 in the hippocampus. Furthermore, network pharmacology analysis identified RAF1 as a potential target of vitamin D in epilepsy, which was further confirmed by molecular docking analysis. Additionally, the mTOR signaling pathway was found to be involved in the regulation of mouse epilepsy by vitamin D. In in vitro experiments, Glu stimulation upregulated the expressions of RAF1 and LC3II/LC3I, inhibited mTOR phosphorylation, and induced neuronal apoptosis. Mechanistically, vitamin D activated the mTOR signaling pathway and alleviated mouse epilepsy via RAF1, while the use of the pathway inhibitor RAPA reversed this effect. Vitamin D alleviated epilepsy symptoms and neuroinflammation in juvenile mice by activating the mTOR signaling pathway via RAF1. These findings provided new insights into the molecular mechanisms underlying the anti-epileptic effects of vitamin D and further supported its use as an adjunctive therapy for existing anti-epileptic drugs.
Assuntos
Epilepsia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-raf , Transdução de Sinais , Serina-Treonina Quinases TOR , Vitamina D , Animais , Serina-Treonina Quinases TOR/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Masculino , Proteínas Proto-Oncogênicas c-raf/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêuticoRESUMO
Aberrant Wnt/beta-catenin signaling following loss of the tumor suppressor adenomatous polyposis coli (APC) is thought to initiate colon adenoma formation. Using zebrafish and human cells, we show that homozygous loss of APC causes failed intestinal cell differentiation but that this occurs in the absence of nuclear beta-catenin and increased intestinal cell proliferation. Therefore, loss of APC is insufficient for causing beta-catenin nuclear localization. APC mutation-induced intestinal differentiation defects instead depend on the transcriptional corepressor C-terminal binding protein-1 (CtBP1), whereas proliferation defects and nuclear accumulation of beta-catenin require the additional activation of KRAS. These findings suggest that, following APC loss, CtBP1 contributes to adenoma initiation as a first step, whereas KRAS activation and beta-catenin nuclear localization promote adenoma progression to carcinomas as a second step. Consistent with this model, human FAP adenomas showed robust upregulation of CtBP1 in the absence of detectable nuclear beta-catenin, whereas nuclear beta-catenin was detected in carcinomas.
Assuntos
Adenoma/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Oxirredutases do Álcool/metabolismo , Neoplasias do Colo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Adenoma/genética , Adenoma/patologia , Polipose Adenomatosa do Colo/patologia , Animais , Diferenciação Celular , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Peixe-Zebra , beta Catenina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismoRESUMO
Ras pathway signaling plays a critical role in cell growth control and is often upregulated in human cancer. The Raf kinases selectively interact with GTP-bound Ras and are important effectors of Ras signaling, functioning as the initiating kinases in the ERK cascade. Here, we identify a route for the phospho-inhibition of Ras/Raf/MEK/ERK pathway signaling that is mediated by the stress-activated JNK cascade. We find that key Ras pathway components, the RasGEF Sos1 and the Rafs, are phosphorylated on multiple S/TP sites in response to JNK activation and that the hyperphosphorylation of these sites renders the Rafs and Sos1 unresponsive to upstream signals. This phospho-regulatory circuit is engaged by cancer therapeutics, such as rigosertib and paclitaxel/Taxol, that activate JNK through mitotic and oxidative stress as well as by physiological regulators of the JNK cascade and may function as a signaling checkpoint to suppress the Ras pathway during conditions of cellular stress.
Assuntos
Glicina/análogos & derivados , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Paclitaxel , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Sulfonas , Ativação Enzimática/efeitos dos fármacos , Glicina/farmacocinética , Glicina/farmacologia , Células HeLa , Humanos , Estresse Oxidativo , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Fosforilação , Sulfonas/farmacocinética , Sulfonas/farmacologia , Proteínas ras/metabolismoRESUMO
Nasopharyngeal carcinoma (NPC), primarily found in the southern region of China, is a malignant tumor known for its highly metastatic characteristics. The high mortality rates caused by the distant metastasis and disease recurrence remain unsolved clinical problems. In clinic, the berberine (BBR) compound has widely been in NPC therapy to decrease metastasis and disease recurrence, and BBR was documented as a main component with multiple anti-NPC effects. However, the mechanism by which BBR inhibits the growth and metastasis of nasopharyngeal carcinoma remains elusive. Herein, we show that BBR effectively inhibits the growth, metastasis, and invasion of NPC via inducing a specific super enhancer (SE). From a mechanistic perspective, the RNA sequencing (RNA-seq) results suggest that the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway, activated by the epidermal growth factor receptor (EGFR), plays a significant role in BBR-induced autophagy in NPC. Blockading of autophagy markedly attenuated the effect of BBR-mediated NPC cell growth and metastasis inhibition. Notably, BBR increased the expression of EGFR by transcription, and knockout of EGFR significantly inhibited BBR-induced microtubule associated protein 1 light chain 3 (LC3)-II increase and p62 inhibition, proposing that EGFR plays a pivotal role in BBR-induced autophagy in NPC. Chromatin immunoprecipitation sequencing (ChIP-seq) results found that a specific SE existed only in NPC cells treated with BBR. This SE knockdown markedly repressed the expression of EGFR and phosphorylated EGFR (EGFR-p) and reversed the inhibition of BBR on NPC proliferation, metastasis, and invasion. Furthermore, BBR-specific SE may trigger autophagy by enhancing EGFR gene transcription, thereby upregulating the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway. In addition, in vivo BBR effectively inhibited NPC cells growth and metastasis, following an increase LC3 and EGFR and a decrease p62. Collectively, this study identifies a novel BBR-special SE and established a new epigenetic paradigm, by which BBR regulates autophagy, inhibits proliferation, metastasis, and invasion. It provides a rationale for BBR application as the treatment regime in NPC therapy in future.
Assuntos
Autofagia , Berberina , Receptores ErbB , Sistema de Sinalização das MAP Quinases , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Berberina/farmacologia , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Autofagia/efeitos dos fármacos , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proliferação de Células/efeitos dos fármacos , Proteínas ras/metabolismo , Proteínas ras/genética , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Camundongos NusRESUMO
Conventional biochemical methods for studying cellular signaling cascades have relied on destructive cell disruption. In contrast, the live cell imaging of fluorescent-tagged transfected proteins offers a non-invasive approach to understanding signal transduction events. One strategy involves monitoring the phosphorylation-dependent shuttling of a fluorescent-labeled kinase between the nucleus and cytoplasm using nuclear localization, export signals, or both. In this paper, we introduce a simple method to visualize intracellular signal transduction in live cells by exploring the translocation properties of PKC from the cytoplasm to the membrane. We fused bait protein to PKC, allowing the bait (RFP-labeled) and target (GFP-labeled) proteins to co-translocate from the cytoplasm to the membrane. However, in non-interacting protein pairs, only the bait protein was translocated to the plasma membrane. To verify our approach, we examined the Raf-MEK-ERK signaling cascade (ERK pathway). We successfully visualized direct Raf1/MEK2 interaction and the KSR1-containing ternary complex (Raf1/MEK2/KSR1). However, the interaction between MEK and ERK was dependent on the presence of the KSR1 scaffold protein under our experimental conditions.
Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-raf , Humanos , Proteínas Proto-Oncogênicas c-raf/metabolismo , Membrana Celular/metabolismo , MAP Quinase Quinase 2/metabolismo , Quinases raf/metabolismo , Proteína Quinase C/metabolismo , Células HeLa , Fosforilação , Animais , Transporte Proteico , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas QuinasesRESUMO
Pancreatic cancer represents a formidable challenge in oncology, primarily due to its aggressive nature and limited therapeutic options. The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC), the main form of pancreatic cancer, remains disappointingly poor with a 5-year overall survival of only 5%. Almost 95% of PDAC patients harbor Kirsten rat sarcoma virus (KRAS) oncogenic mutations. KRAS activates downstream intracellular pathways, most notably the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling axis. Dysregulation of the RAF/MEK/ERK pathway is a crucial feature of pancreatic cancer and therefore its main components, RAF, MEK and ERK kinases, have been targeted pharmacologically, largely by small-molecule inhibitors. The recent advances in the development of inhibitors not only directly targeting the RAF/MEK/ERK pathway but also indirectly through inhibition of its regulators, such as Src homology-containing protein tyrosine phosphatase 2 (SHP2) and Son of sevenless homolog 1 (SOS1), provide new therapeutic opportunities. Moreover, the discovery of allele-specific small-molecule inhibitors against mutant KRAS variants has brought excitement for successful innovations in the battle against pancreatic cancer. Herein, we review the recent advances in targeted therapy and combinatorial strategies with focus on the current preclinical and clinical approaches, providing critical insight, underscoring the potential of these efforts and supporting their promise to improve the lives of patients with PDAC.
Assuntos
Carcinoma Ductal Pancreático , Fibrossarcoma , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/metabolismoRESUMO
We have previously shown that the serine/threonine kinase PKCα triggers MAPK/ERK kinase (MEK)-dependent G1âS cell cycle arrest in intestinal epithelial cells, characterized by downregulation of cyclin D1 and inhibitor of DNA-binding protein 1 (Id1) and upregulation of the cyclin-dependent kinase inhibitor p21Cip1. Here, we use pharmacological inhibitors, genetic approaches, siRNA-mediated knockdown, and immunoprecipitation to further characterize antiproliferative ERK signaling in intestinal cells. We show that PKCα signaling intersects the Ras-Raf-MEK-ERK kinase cascade at the level of Ras small GTPases and that antiproliferative effects of PKCα require active Ras, Raf, MEK, and ERK, core ERK pathway components that are also essential for pro-proliferative ERK signaling induced by epidermal growth factor (EGF). However, PKCα-induced antiproliferative signaling differs from EGF signaling in that it is independent of the Ras guanine nucleotide exchange factors (Ras-GEFs), SOS1/2, and involves prolonged rather than transient ERK activation. PKCα forms complexes with A-Raf, B-Raf, and C-Raf that dissociate upon pathway activation, and all three Raf isoforms can mediate PKCα-induced antiproliferative effects. At least two PKCα-ERK pathways that collaborate to promote growth arrest were identified: one pathway requiring the Ras-GEF, RasGRP3, and H-Ras, leads to p21Cip1 upregulation, while additional pathway(s) mediate PKCα-induced cyclin D1 and Id1 downregulation. PKCα also induces ERK-dependent SOS1 phosphorylation, indicating possible negative crosstalk between antiproliferative and growth-promoting ERK signaling. Importantly, the spatiotemporal activation of PKCα and ERK in the intestinal epithelium in vivo supports the physiological relevance of these pathways and highlights the importance of antiproliferative ERK signaling to tissue homeostasis in the intestine.
Assuntos
Ciclina D1 , Proteína Quinase C-alfa , Ciclina D1/genética , Ciclina D1/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismoRESUMO
The RAS/mitogen-activated protein kinase (MAPK) signaling cascade is commonly dysregulated in human malignancies by processes driven by RAS or RAF oncogenes. Among the members of the RAF kinase family, CRAF plays an important role in the RAS-MAPK signaling pathway, as well as in the progression of cancer. Recent research has provided evidence implicating the role of CRAF in the physiological regulation and the resistance to BRAF inhibitors through MAPK-dependent and MAPK-independent mechanisms. Nevertheless, the effectiveness of solely targeting CRAF kinase activity remains controversial. Moreover, the kinase-independent function of CRAF may be essential for lung cancers with KRAS mutations. It is imperative to develop strategies to enhance efficacy and minimize toxicity in tumors driven by RAS or RAF oncogenes. The review investigates CRAF alterations observed in cancers and unravels the distinct roles of CRAF in cancers propelled by diverse oncogenes. This review also seeks to summarize CRAF-interacting proteins and delineate CRAF's regulation across various cancer hallmarks. Additionally, we discuss recent advances in pan-RAF inhibitors and their combination with other therapeutic approaches to improve treatment outcomes and minimize adverse effects in patients with RAF/RAS-mutant tumors. By providing a comprehensive understanding of the multifaceted role of CRAF in cancers and highlighting the latest developments in RAF inhibitor therapies, we endeavor to identify synergistic targets and elucidate resistance pathways, setting the stage for more robust and safer combination strategies for cancer treatment.
Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas B-raf , Humanos , Linhagem Celular Tumoral , Transdução de Sinais , Fosforilação , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismoRESUMO
SH3 domain-binding kinase 1 (SBK1), is a member of the serine/threonine protein kinases family, and was confirmed to be upregulated in cervical cancer in our previous study. Nonetheless, the role of SBK1 in regulating cancer occurrence and development is unclear. In this study, the stable SBK1-knockdown and -overexpressed cell models were constructed by plasmid transfection technology. Cell viability and growth were assessed through CCK-8, colony formation, and BrdU methods. Cell cycle and apoptosis were analyzed by flow cytometry. The JC-1 staining assay was used to explore mitochondrial membrane potential. The scratch and Transwell assays were used to evaluate the cell metastatic ability. The nude mice models were utilized to explore the SBK1 expression affecting tumor growth in vivo. Our research indicated a high expression of SBK1 both in tissues and cells of cervical cancer. The proliferative, migratory, as well as invasive capacities of cervical cancer cells, were suppressed, and apoptosis was enhanced after SBK1 silence, whereas SBK1 upregulation led to opposite results. In addition, Wnt/ß-catenin and Raf/ERK1/2 pathways were activated by SBK1 upregulation. Furthermore, downregulation of c-Raf or ß-catenin, reversed the proliferation promotion and apoptosis inhibition effects in SBK1-overexpressed cells. The same results were observed with the use of the specific Raf inhibitor. SBK1 overexpression also contributed to tumor growth in vivo. Overall, SBK1 played a vital role in cervical tumorigenesis via activating the Wnt/ß-catenin and Raf/ERK1/2 pathways.
Assuntos
Neoplasias do Colo do Útero , beta Catenina , Animais , Feminino , Humanos , Camundongos , Apoptose , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Domínios de Homologia de src , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Via de Sinalização Wnt , Proteínas Proto-Oncogênicas c-raf/metabolismoRESUMO
Targeted BRAF inhibition (BRAFi) and combined BRAF and MEK inhibition (BRAFi and MEKi) therapies have markedly improved the clinical outcomes of patients with metastatic melanoma. Unfortunately, the efficacy of these treatments is often countered by the acquisition of drug resistance. Here we investigated the molecular mechanisms that underlie acquired resistance to BRAFi and to the combined therapy. Consistent with previous studies, we show that resistance to BRAFi is mediated by ERK pathway reactivation. Resistance to the combined therapy, however, is mediated by mechanisms independent of reactivation of ERK in many resistant cell lines and clinical samples. p21-activated kinases (PAKs) become activated in cells with acquired drug resistance and have a pivotal role in mediating resistance. Our screening, using a reverse-phase protein array, revealed distinct mechanisms by which PAKs mediate resistance to BRAFi and the combined therapy. In BRAFi-resistant cells, PAKs phosphorylate CRAF and MEK to reactivate ERK. In cells that are resistant to the combined therapy, PAKs regulate JNK and ß-catenin phosphorylation and mTOR pathway activation, and inhibit apoptosis, thereby bypassing ERK. Together, our results provide insights into the molecular mechanisms underlying acquired drug resistance to current targeted therapies, and may help to direct novel drug development efforts to overcome acquired drug resistance.