Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.874
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(5): 1314-1314.e1, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428399

RESUMO

Ribosome production is essential for cell growth. Approximately 200 assembly factors drive this complicated pathway that starts in the nucleolus and ends in the cytoplasm. A large number of structural snapshots of the pre-60S pathway have revealed the principles behind large subunit synthesis. To view this SnapShot, open or download the PDF.


Assuntos
Nucléolo Celular , Células Eucarióticas , Ribossomos , Nucléolo Celular/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Células Eucarióticas/química , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo
2.
Cell ; 173(1): 90-103.e19, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29551269

RESUMO

Blood cell formation is classically thought to occur through a hierarchical differentiation process, although recent studies have shown that lineage commitment may occur earlier in hematopoietic stem and progenitor cells (HSPCs). The relevance to human blood diseases and the underlying regulation of these refined models remain poorly understood. By studying a genetic blood disorder, Diamond-Blackfan anemia (DBA), where the majority of mutations affect ribosomal proteins and the erythroid lineage is selectively perturbed, we are able to gain mechanistic insight into how lineage commitment is programmed normally and disrupted in disease. We show that in DBA, the pool of available ribosomes is limited, while ribosome composition remains constant. Surprisingly, this global reduction in ribosome levels more profoundly alters translation of a select subset of transcripts. We show how the reduced translation of select transcripts in HSPCs can impair erythroid lineage commitment, illuminating a regulatory role for ribosome levels in cellular differentiation.


Assuntos
Anemia de Diamond-Blackfan/patologia , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Anemia de Diamond-Blackfan/genética , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas , Feminino , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Mutação de Sentido Incorreto , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Ribossômicas/antagonistas & inibidores , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell ; 169(4): 651-663.e14, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475894

RESUMO

The liver plays a pivotal role in metabolism and xenobiotic detoxification, processes that must be particularly efficient when animals are active and feed. A major question is how the liver adapts to these diurnal changes in physiology. Here, we show that, in mice, liver mass, hepatocyte size, and protein levels follow a daily rhythm, whose amplitude depends on both feeding-fasting and light-dark cycles. Correlative evidence suggests that the daily oscillation in global protein accumulation depends on a similar fluctuation in ribosome number. Whereas rRNA genes are transcribed at similar rates throughout the day, some newly synthesized rRNAs are polyadenylated and degraded in the nucleus in a robustly diurnal fashion with a phase opposite to that of ribosomal protein synthesis. Based on studies with cultured fibroblasts, we propose that rRNAs not packaged into complete ribosomal subunits are polyadenylated by the poly(A) polymerase PAPD5 and degraded by the nuclear exosome.


Assuntos
Fígado/citologia , Fígado/fisiologia , Ribossomos/metabolismo , Animais , Núcleo Celular/metabolismo , Tamanho Celular , Ritmo Circadiano , Exossomos/metabolismo , Hepatócitos/citologia , Hepatócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fotoperíodo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Ribossomos/química
4.
Mol Cell ; 84(8): 1400-1402, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640892

RESUMO

Nucleolar stress has been consistently linked to age-related diseases. In this issue, Sirozh et al.1 find that the common molecular signature of nucleolar stress is the accumulation of free ribosomal proteins, which leads to premature aging in mice; however, it can be reversed by mTOR inhibition.


Assuntos
Nucléolo Celular , Proteínas Ribossômicas , Camundongos , Animais , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , RNA Ribossômico/metabolismo
5.
Mol Cell ; 84(12): 2337-2352.e9, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38870935

RESUMO

Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the intranuclear quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with ribosomopathies.


Assuntos
Poliubiquitina , Proteínas Ribossômicas , Ribossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Poliubiquitina/metabolismo , Poliubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteostase , Núcleo Celular/metabolismo
6.
Cell ; 164(1-2): 91-102, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26709046

RESUMO

Eukaryotic ribosome biogenesis depends on several hundred assembly factors to produce functional 40S and 60S ribosomal subunits. The final phase of 60S subunit biogenesis is cytoplasmic maturation, which includes the proofreading of functional centers of the 60S subunit and the release of several ribosome biogenesis factors. We report the cryo-electron microscopy (cryo-EM) structure of the yeast 60S subunit in complex with the biogenesis factors Rei1, Arx1, and Alb1 at 3.4 Å resolution. In addition to the network of interactions formed by Alb1, the structure reveals a mechanism for ensuring the integrity of the ribosomal polypeptide exit tunnel. Arx1 probes the entire set of inner-ring proteins surrounding the tunnel exit, and the C terminus of Rei1 is deeply inserted into the ribosomal tunnel, where it forms specific contacts along almost its entire length. We provide genetic and biochemical evidence that failure to insert the C terminus of Rei1 precludes subsequent steps of 60S maturation.


Assuntos
Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Chaetomium/metabolismo , Microscopia Crioeletrônica , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Alinhamento de Sequência
7.
Mol Cell ; 83(9): 1374-1376, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37146569

RESUMO

Acute stressors or normal cellular function may result in ribosomal protein damage, which threatens the functional ribosome pool and translation. In this issue, Yang et al.1 show that chaperones can extract damaged ribosomal proteins and replace them with newly synthesized versions to repair mature ribosomes.


Assuntos
Chaperonas Moleculares , Ribossomos , Ribossomos/genética , Ribossomos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
8.
Mol Cell ; 83(9): 1527-1537.e5, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37086725

RESUMO

Because of the central role ribosomes play for protein translation and ribosome-mediated mRNA and protein quality control (RQC), the ribosome pool is surveyed and dysfunctional ribosomes degraded both during assembly, as well as the functional cycle. Oxidative stress downregulates translation and damages mRNAs and ribosomal proteins (RPs). Although damaged mRNAs are detected and degraded via RQC, how cells mitigate damage to RPs is not known. Here, we show that cysteines in Rps26 and Rpl10 are readily oxidized, rendering the proteins non-functional. Oxidized Rps26 and Rpl10 are released from ribosomes by their chaperones, Tsr2 and Sqt1, and the damaged ribosomes are subsequently repaired with newly made proteins. Ablation of this pathway impairs growth, which is exacerbated under oxidative stress. These findings reveal an unanticipated mechanism for chaperone-mediated ribosome repair, augment our understanding of ribosome quality control, and explain previous observations of protein exchange in ribosomes from dendrites, with broad implications for aging and health.


Assuntos
Proteínas Ribossômicas , Ribossomos , Ribossomos/genética , Ribossomos/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estresse Oxidativo , Biossíntese de Proteínas
9.
Mol Cell ; 83(8): 1280-1297.e11, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36924766

RESUMO

RNA polymerase II (RNA Pol II) has been recognized as a passively regulated multi-subunit holoenzyme. However, the extent to which RNA Pol II subunits might be important beyond the RNA Pol II complex remains unclear. Here, fractions containing disassociated RPB3 (dRPB3) were identified by size exclusion chromatography in various cells. Through a unique strategy, i.e., "specific degradation of disassociated subunits (SDDS)," we demonstrated that dRPB3 functions as a regulatory component of RNA Pol II to enable the preferential control of 3' end processing of ribosomal protein genes directly through its N-terminal domain. Machine learning analysis of large-scale genomic features revealed that the little elongation complex (LEC) helps to specialize the functions of dRPB3. Mechanistically, dRPB3 facilitates CBC-PCF11 axis activity to increase the efficiency of 3' end processing. Furthermore, RPB3 is dynamically regulated during development and diseases. These findings suggest that RNA Pol II gains specific regulatory functions by trapping disassociated subunits in mammalian cells.


Assuntos
RNA Polimerase II , Transcrição Gênica , Animais , RNA Polimerase II/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Subunidades Proteicas/genética , Mamíferos/metabolismo
10.
Nature ; 626(8001): 1125-1132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355796

RESUMO

To conserve energy during starvation and stress, many organisms use hibernation factor proteins to inhibit protein synthesis and protect their ribosomes from damage1,2. In bacteria, two families of hibernation factors have been described, but the low conservation of these proteins and the huge diversity of species, habitats and environmental stressors have confounded their discovery3-6. Here, by combining cryogenic electron microscopy, genetics and biochemistry, we identify Balon, a new hibernation factor in the cold-adapted bacterium Psychrobacter urativorans. We show that Balon is a distant homologue of the archaeo-eukaryotic translation factor aeRF1 and is found in 20% of representative bacteria. During cold shock or stationary phase, Balon occupies the ribosomal A site in both vacant and actively translating ribosomes in complex with EF-Tu, highlighting an unexpected role for EF-Tu in the cellular stress response. Unlike typical A-site substrates, Balon binds to ribosomes in an mRNA-independent manner, initiating a new mode of ribosome hibernation that can commence while ribosomes are still engaged in protein synthesis. Our work suggests that Balon-EF-Tu-regulated ribosome hibernation is a ubiquitous bacterial stress-response mechanism, and we demonstrate that putative Balon homologues in Mycobacteria bind to ribosomes in a similar fashion. This finding calls for a revision of the current model of ribosome hibernation inferred from common model organisms and holds numerous implications for how we understand and study ribosome hibernation.


Assuntos
Proteínas de Bactérias , Resposta ao Choque Frio , Fatores de Terminação de Peptídeos , Biossíntese de Proteínas , Psychrobacter , Proteínas Ribossômicas , Ribossomos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Fator Tu de Elongação de Peptídeos/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/química , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Psychrobacter/química , Psychrobacter/genética , Psychrobacter/metabolismo , Psychrobacter/ultraestrutura , Microscopia Crioeletrônica , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/ultraestrutura
11.
Nat Immunol ; 18(9): 1046-1057, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28714979

RESUMO

Translation is a critical process in protein synthesis, but translational regulation in antigen-specific T cells in vivo has not been well defined. Here we have characterized the translatome of virus-specific CD8+ effector T cells (Teff cells) during acute infection of mice with lymphocytic choriomeningitis virus (LCMV). Antigen-specific T cells exerted dynamic translational control of gene expression that correlated with cell proliferation and stimulation via the T cell antigen receptor (TCR). The translation of mRNAs that encode translation machinery, including ribosomal proteins, was upregulated during the T cell clonal-expansion phase, followed by inhibition of the translation of those transcripts when the CD8+ Teff cells stopped dividing just before the contraction phase. That translational suppression was more pronounced in terminal effector cells than in memory precursor cells and was regulated by antigenic stimulation and signals from the kinase mTOR. Our studies show that translation of transcripts encoding ribosomal proteins is regulated during the differentiation of CD8+ Teff cells and might have a role in fate 'decisions' involved in the formation of memory cells.


Assuntos
Infecções por Arenaviridae/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Biossíntese de Proteínas/imunologia , Animais , Infecções por Arenaviridae/genética , Infecções por Arenaviridae/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Citometria de Fluxo , Regulação da Expressão Gênica , Memória Imunológica/imunologia , Interferon gama/imunologia , Vírus da Coriomeningite Linfocítica , Camundongos , Biossíntese de Proteínas/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/imunologia
12.
Cell ; 152(5): 969-83, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23452847

RESUMO

Embedded in the nuclear envelope, nuclear pore complexes (NPCs) not only regulate nuclear transport but also interface with transcriptionally active euchromatin, largely silenced heterochromatin, as well as the boundaries between these regions. It is unclear what functional role NPCs play in establishing or maintaining these distinct chromatin domains. We report that the yeast NPC protein Nup170p interacts with regions of the genome that contain ribosomal protein and subtelomeric genes, where it functions in nucleosome positioning and as a repressor of transcription. We show that the role of Nup170p in subtelomeric gene silencing is linked to its association with the RSC chromatin-remodeling complex and the silencing factor Sir4p, and that the binding of Nup170p and Sir4p to subtelomeric chromatin is cooperative and necessary for the association of telomeres with the nuclear envelope. Our results establish the NPC as an active participant in silencing and the formation of peripheral heterochromatin.


Assuntos
Inativação Gênica , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromatina/química , Cromatina/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas Ribossômicas/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo , Fatores de Transcrição/metabolismo
13.
Nature ; 605(7908): 113-118, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35444278

RESUMO

Intragenic regions that are removed during maturation of the RNA transcript-introns-are universally present in the nuclear genomes of eukaryotes1. The budding yeast, an otherwise intron-poor species, preserves two sets of ribosomal protein genes that differ primarily in their introns2,3. Although studies have shed light on the role of ribosomal protein introns under stress and starvation4-6, understanding the contribution of introns to ribosome regulation remains challenging. Here, by combining isogrowth profiling7 with single-cell protein measurements8, we show that introns can mediate inducible phenotypic heterogeneity that confers a clear fitness advantage. Osmotic stress leads to bimodal expression of the small ribosomal subunit protein Rps22B, which is mediated by an intron in the 5' untranslated region of its transcript. The two resulting yeast subpopulations differ in their ability to cope with starvation. Low levels of Rps22B protein result in prolonged survival under sustained starvation, whereas high levels of Rps22B enable cells to grow faster after transient starvation. Furthermore, yeasts growing at high concentrations of sugar, similar to those in ripe grapes, exhibit bimodal expression of Rps22B when approaching the stationary phase. Differential intron-mediated regulation of ribosomal protein genes thus provides a way to diversify the population when starvation threatens in natural environments. Our findings reveal a role for introns in inducing phenotypic heterogeneity in changing environments, and suggest that duplicated ribosomal protein genes in yeast contribute to resolving the evolutionary conflict between precise expression control and environmental responsiveness9.


Assuntos
Proteínas Ribossômicas , Saccharomyces cerevisiae , Regiões 5' não Traduzidas , Evolução Biológica , Meio Ambiente , Expressão Gênica , Genoma , Íntrons/genética , Fenótipo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Mol Cell ; 79(6): 1051-1065.e10, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32877643

RESUMO

Mitochondria contain their own gene expression systems, including membrane-bound ribosomes dedicated to synthesizing a few hydrophobic subunits of the oxidative phosphorylation (OXPHOS) complexes. We used a proximity-dependent biotinylation technique, BioID, coupled with mass spectrometry to delineate in baker's yeast a comprehensive network of factors involved in biogenesis of mitochondrial encoded proteins. This mitochondrial gene expression network (MiGENet) encompasses proteins involved in transcription, RNA processing, translation, or protein biogenesis. Our analyses indicate the spatial organization of these processes, thereby revealing basic mechanistic principles and the proteins populating strategically important sites. For example, newly synthesized proteins are directly handed over to ribosomal tunnel exit-bound factors that mediate membrane insertion, co-factor acquisition, or their mounting into OXPHOS complexes in a special early assembly hub. Collectively, the data reveal the connectivity of mitochondrial gene expression, reflecting a unique tailoring of the mitochondrial gene expression system.


Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/genética , Fosforilação Oxidativa , Biossíntese de Proteínas/genética , Saccharomyces cerevisiae/genética
15.
Mol Cell ; 79(6): 1024-1036.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32871103

RESUMO

Bacterial ribosomal RNAs are synthesized by a dedicated, conserved transcription-elongation complex that transcribes at high rates, shields RNA polymerase from premature termination, and supports co-transcriptional RNA folding, modification, processing, and ribosomal subunit assembly by presently unknown mechanisms. We have determined cryo-electron microscopy structures of complete Escherichia coli ribosomal RNA transcription elongation complexes, comprising RNA polymerase; DNA; RNA bearing an N-utilization-site-like anti-termination element; Nus factors A, B, E, and G; inositol mono-phosphatase SuhB; and ribosomal protein S4. Our structures and structure-informed functional analyses show that fast transcription and anti-termination involve suppression of NusA-stabilized pausing, enhancement of NusG-mediated anti-backtracking, sequestration of the NusG C-terminal domain from termination factor ρ, and the ρ blockade. Strikingly, the factors form a composite RNA chaperone around the RNA polymerase RNA-exit tunnel, which supports co-transcriptional RNA folding and annealing of distal RNA regions. Our work reveals a polymerase/chaperone machine required for biosynthesis of functional ribosomes.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Chaperonas Moleculares/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Sítios de Ligação/genética , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/ultraestrutura , Biossíntese de Proteínas/genética , Dobramento de RNA/genética , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Ribossomos/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/ultraestrutura
16.
Mol Cell ; 79(4): 629-644.e4, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32679035

RESUMO

In contrast to the bacterial translation machinery, mitoribosomes and mitochondrial translation factors are highly divergent in terms of composition and architecture. There is increasing evidence that the biogenesis of mitoribosomes is an intricate pathway, involving many assembly factors. To better understand this process, we investigated native assembly intermediates of the mitoribosomal large subunit from the human parasite Trypanosoma brucei using cryo-electron microscopy. We identify 28 assembly factors, 6 of which are homologous to bacterial and eukaryotic ribosome assembly factors. They interact with the partially folded rRNA by specifically recognizing functionally important regions such as the peptidyltransferase center. The architectural and compositional comparison of the assembly intermediates indicates a stepwise modular assembly process, during which the rRNA folds toward its mature state. During the process, several conserved GTPases and a helicase form highly intertwined interaction networks that stabilize distinct assembly intermediates. The presented structures provide general insights into mitoribosomal maturation.


Assuntos
Ribossomos Mitocondriais/química , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Maiores/química , Trypanosoma brucei brucei/metabolismo , Microscopia Crioeletrônica , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Ribossomos Mitocondriais/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Ribossômico/química , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Trypanosoma brucei brucei/genética
17.
Mol Cell ; 77(6): 1193-1205.e5, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31981475

RESUMO

Ribosome-associated quality control (RQC) purges aberrant mRNAs and nascent polypeptides in a multi-step molecular process initiated by the E3 ligase ZNF598 through sensing of ribosomes collided at aberrant mRNAs and monoubiquitination of distinct small ribosomal subunit proteins. We show that G3BP1-family-USP10 complexes are required for deubiquitination of RPS2, RPS3, and RPS10 to rescue modified 40S subunits from programmed degradation. Knockout of USP10 or G3BP1 family proteins increased lysosomal ribosomal degradation and perturbed ribosomal subunit stoichiometry, both of which were rescued by a single K214R substitution of RPS3. While the majority of RPS2 and RPS3 monoubiquitination resulted from ZNF598-dependent sensing of ribosome collisions initiating RQC, another minor pathway contributed to their monoubiquitination. G3BP1 family proteins have long been considered RNA-binding proteins, however, our results identified 40S subunits and associated mRNAs as their predominant targets, a feature shared by stress granules to which G3BP1 family proteins localize under stress.


Assuntos
DNA Helicases/metabolismo , Lisossomos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Biossíntese de Proteínas , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA Helicases/genética , Células HEK293 , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Mensageiro/genética , RNA Ribossômico 18S , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/genética , Ubiquitina Tiolesterase/genética , Ubiquitinação
18.
Trends Biochem Sci ; 48(3): 213-215, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36207216

RESUMO

A common aspect of ribosome assembly, conserved across all domains of life, is the establishment of connections between the 5' and 3' ends of the large subunit (LSU) ribosomal RNA (rRNA) to initiate rRNA domain compaction and subunit assembly. We discuss the diverse mechanisms employed in different organisms to accomplish this important event.


Assuntos
RNA Ribossômico , Proteínas de Saccharomyces cerevisiae , Subunidades Ribossômicas Maiores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Ribossômicas/genética
19.
EMBO J ; 42(7): e112699, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36762427

RESUMO

The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.


Assuntos
Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Ribossômicas/genética , Proteômica , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
20.
EMBO J ; 42(12): e112362, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37155573

RESUMO

eIF3, whose subunits are frequently overexpressed in cancer, regulates mRNA translation from initiation to termination, but mRNA-selective functions of individual subunits remain poorly defined. Using multiomic profiling upon acute depletion of eIF3 subunits, we observed that while eIF3a, b, e, and f markedly differed in their impact on eIF3 holo-complex formation and translation, they were each required for cancer cell proliferation and tumor growth. Remarkably, eIF3k showed the opposite pattern with depletion promoting global translation, cell proliferation, tumor growth, and stress resistance through repressing the synthesis of ribosomal proteins, especially RPS15A. Whereas ectopic expression of RPS15A mimicked the anabolic effects of eIF3k depletion, disruption of eIF3 binding to the 5'-UTR of RSP15A mRNA negated them. eIF3k and eIF3l are selectively downregulated in response to endoplasmic reticulum and oxidative stress. Supported by mathematical modeling, our data uncover eIF3k-l as a mRNA-specific module which, through controlling RPS15A translation, serves as a rheostat of ribosome content, possibly to secure spare translational capacity that can be mobilized during stress.


Assuntos
Fator de Iniciação 3 em Eucariotos , Neoplasias , Humanos , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA