RESUMO
The solute carrier family 4 (SLC4) includes 10 members (SLC4A1-5, SLC4A7-11), which are expressed in multiple tissues in the human body. The SLC4 family members differ in their substrate dependence, charge transport stoichiometry and tissue expression. Their common function is responsible for the transmembrane exchange of multiple ions, which is involved in many important physiological processes, such as erythrocyte CO2 transport and the regulation of cell volume and intracellular pH. In recent years, many studies have focused on the role of SLC4 family members in the occurrence of human diseases. When SLC4 family members have gene mutations, a series of functional disorders will occur in the body, leading to the occurrence of some diseases. This review summarizes the recent progress about the structures, functions and disease correlation of SLC4 members, in order to provide clues for the prevention and treatment of related human diseases.
Assuntos
Mutação , Proteínas SLC4A , Humanos , Proteínas SLC4A/genética , Proteínas SLC4A/fisiologiaRESUMO
Bicarbonate uptake is one of the early steps of capacitation, but the identification of proteins regulating anion fluxes remains elusive. The aim of this study is to investigate the role of sperm solute carrier 4 (SLC4) A1 (spAE1) in the capacitation process. The expression, location, and tyrosine-phosphorylation (Tyr-P) level of spAE1 were assessed. Thereby, it was found that 4,4'-Diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), an SLC4 family channel blocker, inhibited capacitation in a dose-dependent manner by decreasing acrosome reaction (ARC% 24.5 ± 3.3 vs 64.9 ± 4.3, p < 0.05) and increasing the percentage of not viable cells (NVC%), comparable to the inhibition by I-172, a cystic fibrosis transmembrane conductance regulator (CFTR) blocker (AR% 30.5 ± 4.4 and NVC% 18.6 ± 2.2). When used in combination, a synergistic inhibitory effect was observed with a remarkable increase of the percentage of NVC (45.3 ± 4.1, p < 0.001). spAE1 was identified in sperm membrane as a substrate for Tyr-protein kinases Lyn and Syk, which were identified as both soluble and membrane-bound pools. spAE1-Tyr-P level increased in the apical region of sperm under capacitating conditions and was negatively affected by I-172 or DIDS, and, to a far greater extent, by a combination of both. In conclusion, we demonstrated that spAE1 is expressed in sperm membranes and it is phosphorylated by Syk, but above all by Lyn on Tyr359, which are involved in sperm viability and capacitation.
Assuntos
Proteínas SLC4A/metabolismo , Capacitação Espermática/fisiologia , Espermatozoides/fisiologia , Tirosina/metabolismo , Reação Acrossômica , Membrana Celular , Sobrevivência Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Masculino , Fosforilação , Proteínas SLC4A/genéticaRESUMO
The SLC4 family Cl-/[Formula: see text] cotransporters (NBCe1, NBCe2, NBCn1, and NBCn2) contribute to a variety of vital physiological processes including pH regulation and epithelial fluid secretion. Accordingly, their dysfunction can have devastating effects. Disorders such as epilepsy, hemolytic anemia, glaucoma, hearing loss, osteopetrosis, and renal tubular acidosis are all genetically linked to SLC4-family gene loci. This review summarizes how studies of Slc4-modified mice have enhanced our understanding of the etiology of SLC4-linked pathologies and the interpretation of genetic linkage studies. The review also surveys the novel disease signs exhibited by Slc4-modified mice which could either be considered to presage their description in humans, or to highlight interspecific differences. Finally, novel Slc4-modified mouse models are proposed, the study of which may further our understanding of the basis and treatment of SLC4-linked disorders of [Formula: see text]-transporter dysfunction.
Assuntos
Equilíbrio Ácido-Base/genética , Bicarbonatos/metabolismo , Túbulos Renais/metabolismo , Proteínas SLC4A/genética , Proteínas SLC4A/metabolismo , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Concentração de Íons de Hidrogênio , Túbulos Renais/fisiopatologia , Camundongos Transgênicos , FenótipoRESUMO
Bone remodeling requires osteoclasts to generate and maintain an acidified resorption compartment between the apical membrane and the bone surface to solubilize hydroxyapatite crystals within the bone matrix. This acidification process requires (i) apical proton secretion by a vacuolar H(+)-ATPase, (ii) actin cytoskeleton reorganization into a podosome belt that forms a gasket to restrict lacunar acid leakage, and (iii) basolateral chloride uptake and bicarbonate extrusion by an anion exchanger to provide Cl(-) permissive for apical acid secretion while preventing cytoplasmic alkalinization. Here we show that osteoclast-targeted deletion in mice of solute carrier family 4 anion exchanger member 2 (Slc4a2) results in osteopetrosis. We further demonstrate a previously unrecognized consequence of SLC4A2 loss of function in the osteoclast: dysregulation of calpain-dependent podosome disassembly, leading to abnormal actin belt formation, cell spreading, and migration. Rescue of SLC4A2-deficient osteoclasts with functionally defined mutants of SLC4A2 indicates regulation of actin cytoskeletal reorganization by anion-exchange activity and intracellular pH, independent of SLC4A2's long N-terminal cytoplasmic domain. These data suggest that maintenance of intracellular pH in osteoclasts through anion exchange regulates the actin superstructures required for bone resorption.
Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Antiporters/metabolismo , Calpaína/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Osteoclastos/metabolismo , Animais , Proteínas de Transporte de Ânions/deficiência , Proteínas de Transporte de Ânions/genética , Antiporters/deficiência , Antiporters/genética , Células Cultivadas , Antiportadores de Cloreto-Bicarbonato/deficiência , Antiportadores de Cloreto-Bicarbonato/genética , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Knockout , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Osteoclastos/patologia , Osteopetrose/genética , Osteopetrose/metabolismo , Osteopetrose/patologia , Proteínas SLC4ARESUMO
Three genetic corneal dystrophies [congenital hereditary endothelial dystrophy type 2 (CHED2), Harboyan syndrome and Fuchs endothelial corneal dystrophy] arise from mutations of the SLC4a11 gene, which cause blindness from fluid accumulation in the corneal stroma. Selective transmembrane water conductance controls cell size, renal fluid reabsorption and cell division. All known water-channelling proteins belong to the major intrinsic protein family, exemplified by aquaporins (AQPs). Here we identified SLC4A11, a member of the solute carrier family 4 of bicarbonate transporters, as an unexpected addition to known transmembrane water movement facilitators. The rate of osmotic-gradient driven cell-swelling was monitored in Xenopus laevis oocytes and HEK293 cells, expressing human AQP1, NIP5;1 (a water channel protein from plant), hCNT3 (a human nucleoside transporter) and human SLC4A11. hCNT3-expressing cells swelled no faster than control cells, whereas SLC4A11-mediated water permeation at a rate about half that of some AQP proteins. SLC4A11-mediated water movement was: (i) similar to some AQPs in rate; (ii) uncoupled from solute-flux; (iii) inhibited by stilbene disulfonates (classical SLC4 inhibitors); (iv) inactivated in one CHED2 mutant (R125H). Localization of AQP1 and SLC4A11 in human and murine corneal (apical and basolateral, respectively) suggests a cooperative role in mediating trans-endothelial water reabsorption. Slc4a11(-/-) mice manifest corneal oedema and distorted endothelial cells, consistent with loss of a water-flux. Observed water-flux through SLC4A11 extends the repertoire of known water movement pathways and call for a re-examination of explanations for water movement in human tissues.
Assuntos
Distrofias Hereditárias da Córnea/genética , Substância Própria/fisiopatologia , Proteínas SLC4A/metabolismo , Água/metabolismo , Animais , Aquaporina 1/metabolismo , Aquaporinas/metabolismo , Córnea/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Distrofias Hereditárias da Córnea/patologia , Substância Própria/metabolismo , Substância Própria/patologia , Células HEK293 , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Oócitos/metabolismo , Fenótipo , Proteínas SLC4A/genética , Transdução de Sinais/genética , Xenopus laevisRESUMO
SLC4A11 mutations cause some cases of the corneal endothelial dystrophies, congenital hereditary endothelial corneal dystrophy type 2 (CHED2), Harboyan syndrome (HS), and Fuchs endothelial corneal dystrophy (FECD). SLC4A11 protein was recently identified as facilitating water flux across membranes. SLC4A11 point mutations usually cause SLC4A11 misfolding and retention in the endoplasmic reticulum (ER). We set about to test the feasibility of rescuing misfolded SLC4A11 protein to the plasma membrane as a therapeutic approach. Using a transfected HEK293 cell model, we measured functional activity present in cells expressing SLC4A11 variants in combinations representing the state found in CHED2 carriers, affected CHED2, FECD individuals, and unaffected individuals. These cells manifest respectively about 60%, 5%, and 25% of the water flux activity, relative to the unaffected (WT alone). ER-retained CHED2 mutant SLC4A11 protein could be rescued to the plasma membrane, where it conferred 25%-30% of WT water flux level. Further, some ER-retained CHED2 mutants expressed at 30°C supported increased water flux compared with 37°C cultures. Caspase activation and cell vitality assays revealed that expression of SLC4A11 mutants in HEK293 cells does not induce cell death. We conclude that therapeutics able to increase cell surface localization of ER-retained SLC4A11 mutants hold promise to treat CHED2 and FECD patients.
Assuntos
Distrofias Hereditárias da Córnea/genética , Mutação , Proteínas SLC4A/genética , Apoptose/genética , Caspase 3/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Retículo Endoplasmático/metabolismo , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Dobramento de Proteína , Multimerização Proteica , Transporte Proteico , Deficiências na Proteostase/genética , Proteínas SLC4A/química , Proteínas SLC4A/metabolismo , TemperaturaRESUMO
SLC4 transporters are membrane proteins that in general mediate the coupled transport of bicarbonate (carbonate) and share amino acid sequence homology. These proteins differ as to whether they also transport Na(+) and/or Cl(-), in addition to their charge transport stoichiometry, membrane targeting, substrate affinities, developmental expression, regulatory motifs, and protein-protein interactions. These differences account in part for the fact that functionally, SLC4 transporters have various physiological roles in mammals including transepithelial bicarbonate transport, intracellular pH regulation, transport of Na(+) and/or Cl(-), and possibly water. Bicarbonate transport is not unique to the SLC4 family since the structurally unrelated SLC26 family has at least three proteins that mediate anion exchange. The present review focuses on the first of the sodium-dependent SLC4 transporters that was identified whose structure has been most extensively studied: the electrogenic Na(+)-base cotransporter NBCe1. Mutations in NBCe1 cause proximal renal tubular acidosis (pRTA) with neurologic and ophthalmologic extrarenal manifestations. Recent studies have characterized the important structure-function properties of the transporter and how they are perturbed as a result of mutations that cause pRTA. It has become increasingly apparent that the structure of NBCe1 differs in several key features from the SLC4 Cl(-)-HCO3 (-) exchanger AE1 whose structural properties have been well-studied. In this review, the structure-function properties and regulation of NBCe1 will be highlighted, and its role in health and disease will be reviewed in detail.
Assuntos
Acidose Tubular Renal/genética , Antiportadores de Cloreto-Bicarbonato/fisiologia , Proteínas SLC4A/fisiologia , Simportadores de Sódio-Bicarbonato/fisiologia , Acidose Tubular Renal/fisiopatologia , Animais , Transporte Biológico/genética , Humanos , Proteínas de Membrana Transportadoras/fisiologia , Relação Estrutura-AtividadeRESUMO
UNLABELLED: Secretin stimulates ductal secretion by interacting with secretin receptor (SR) activating cyclic adenosine 3',5'-monophosphate/cystic fibrosis transmembrane conductance regulator/chloride bicarbonate anion exchanger 2 (cAMPâCFTRâCl(-) /HCO 3- AE2) signaling that is elevated by biliary hyperplasia. Cholangiocytes secrete several neuroendocrine factors regulating biliary functions by autocrine mechanisms. Melatonin inhibits biliary growth and secretin-stimulated choleresis in cholestatic bile-duct-ligated (BDL) rats by interaction with melatonin type 1 (MT1) receptor through down-regulation of cAMP-dependent signaling. No data exist regarding the role of melatonin synthesized locally by cholangiocytes in the autocrine regulation of biliary growth and function. In this study, we evaluated the (1) expression of arylalkylamine N-acetyltransferase (AANAT; the rate-limiting enzyme for melatonin synthesis from serotonin) in cholangiocytes and (2) effect of local modulation of biliary AANAT expression on the autocrine proliferative/secretory responses of cholangiocytes. In the liver, cholangiocytes (and, to a lesser extent, BDL hepatocytes) expressed AANAT. AANAT expression and melatonin secretion (1) increased in BDL, compared to normal rats and BDL rats treated with melatonin, and (2) decreased in normal and BDL rats treated with AANAT Vivo-Morpholino, compared to controls. The decrease in AANAT expression, and subsequent lower melatonin secretion by cholangiocytes, was associated with increased biliary proliferation and increased SR, CFTR, and Cl(-) /HCO 3- AE2 expression. Overexpression of AANAT in cholangiocyte cell lines decreased the basal proliferative rate and expression of SR, CFTR, and Cl(-) /HCO 3- AE2 and ablated secretin-stimulated biliary secretion in these cells. CONCLUSION: Local modulation of melatonin synthesis may be important for management of the balance between biliary proliferation/damage that is typical of cholangiopathies. (HEPATOLOGY 2013).
Assuntos
Arilalquilamina N-Acetiltransferase/metabolismo , Comunicação Autócrina/fisiologia , Ductos Biliares Intra-Hepáticos/citologia , Ductos Biliares Intra-Hepáticos/enzimologia , Colestase/metabolismo , Colestase/patologia , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antiporters/genética , Antiporters/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Arilalquilamina N-Acetiltransferase/genética , Comunicação Autócrina/efeitos dos fármacos , Ductos Biliares Intra-Hepáticos/efeitos dos fármacos , Linhagem Celular Transformada , Proliferação de Células , Técnicas de Silenciamento de Genes , Masculino , Melatonina/sangue , Melatonina/farmacologia , Camundongos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Proteínas SLC4ARESUMO
Anion exchanger 2 (AE2) is an electroneutral Na+-independent Cl-/HCO3- exchanger belongs to the SLC4 transporter family. The widely expressed AE2 participates in a variety of physiological processes, including transepithelial acid-base secretion and osteoclastogenesis. Both the transmembrane domains (TMDs) and the N-terminal cytoplasmic domain (NTD) are involved in regulation of AE2 activity. However, the regulatory mechanism remains unclear. Here, we report a 3.2 Å cryo-EM structure of the AE2 TMDs in complex with PIP2 and a 3.3 Å full-length mutant AE2 structure in the resting state without PIP2. We demonstrate that PIP2 at the TMD dimer interface is involved in the substrate exchange process. Mutation in the PIP2 binding site leads to the displacement of TM7 and further stabilizes the interaction between the TMD and the NTD. Reduced substrate transport activity and conformation similar to AE2 in acidic pH indicating the central contribution of PIP2 to the function of AE2.
Assuntos
Antiporters , Lipídeos , Humanos , Antiportadores de Cloreto-Bicarbonato/genética , Antiporters/genética , Proteínas SLC4A , Mutação , Proteínas de Transporte de Ânions/metabolismo , Concentração de Íons de HidrogênioRESUMO
Mutations in the solute linked carrier family 4 member 11 (SLC4A11) gene are associated with congenital hereditary endothelial dystrophy (CHED) and Fuchs corneal endothelial dystrophy type 4 (FECD4), both characterized by corneal endothelial cell (CEnC) dysfunction and/or cell loss leading to corneal edema and visual impairment. In this study, we characterize the impact of CHED-/FECD4-associated SLC4A11 mutations on CEnC function and SLC4A11 protein localization by generating and comparing human CEnC (hCEnC) lines expressing wild type SLC4A11 (SLC4A11WT) or mutant SLC4A11 harboring CHED-/FECD4-associated SLC4A11 mutations (SLC4A11MU). SLC4A11WT and SLC4A11MU hCEnC lines were generated to express either SLC4A11 variant 2 (V2WT and V2MU) or variant 3 (V3WT and V3MU), the two major variants expressed in ex vivo hCEnC. Functional assays were performed to assess cell barrier, proliferation, viability, migration, and NH3-induced membrane conductance. We demonstrate SLC4A11-/- and SLC4A11MU hCEnC lines exhibited increased migration rates, altered proliferation and decreased cell viability compared to SLC4A11WT hCEnC. Additionally, SLC4A11-/- hCEnC demonstrated decreased cell-substrate adhesion and membrane capacitances compared to SLC4A11WT hCEnC. Induction with 10mM NH4Cl led SLC4A11WT hCEnC to depolarize; conversely, SLC4A11-/- hCEnC hyperpolarized and the majority of SLC4A11MU hCEnC either hyperpolarized or had minimal membrane potential changes following NH4Cl induction. Immunostaining of primary hCEnC and SLC4A11WT hCEnC lines for SLC4A11 demonstrated predominately plasma membrane staining with poor or partial colocalization with mitochondrial marker COX4 within a subset of punctate subcellular structures. Overall, our findings suggest CHED-associated SLC4A11 mutations likely lead to hCEnC dysfunction, and ultimately CHED, by interfering with cell migration, proliferation, viability, membrane conductance, barrier function, and/or cell surface localization of the SLC4A11 protein in hCEnC. Additionally, based on their similar subcellular localization and exhibiting similar cell functional profiles, protein isoforms encoded by SLC4A11 variant 2 and variant 3 likely have highly overlapping functional roles in hCEnC.
Assuntos
Proteínas de Transporte de Ânions , Antiporters , Distrofias Hereditárias da Córnea , Distrofia Endotelial de Fuchs , Humanos , Proteínas de Transporte de Ânions/genética , Antiporters/genética , Transtornos Cromossômicos , Distrofias Hereditárias da Córnea/genética , Células Endoteliais , Distrofia Endotelial de Fuchs/genética , Mutação , Proteínas SLC4ARESUMO
Carbonic anhydrase IX (CA IX) is a hypoxia-induced cell surface enzyme expressed in solid tumors, and functionally involved in acidification of extracellular pH and destabilization of intercellular contacts. Since both extracellular acidosis and reduced cell adhesion facilitate invasion and metastasis, we investigated the role of CA IX in cell migration, which promotes the metastatic cascade. As demonstrated here, ectopically expressed CA IX increases scattering, wound healing and transwell migration of MDCK cells, while an inactive CA IX variant lacking the catalytic domain (ΔCA) fails to do so. Correspondingly, hypoxic HeLa cells exhibit diminished migration upon inactivation of the endogenous CA IX either by forced expression of the dominant-negative ΔCA variant or by treatment with CA inhibitor, implying that the catalytic activity is indispensable for the CA IX function. Interestingly, CA IX improves cell migration both in the absence and presence of hepatocyte growth factor (HGF), an established inducer of epithelial-mesenchymal transition. On the other hand, HGF up-regulates CA IX transcription and triggers CA IX protein accumulation at the leading edge of lamellipodia. In these membrane regions CA IX co-localizes with sodium bicarbonate co-transporter (NBCe1) and anion exchanger 2 (AE2) that are both components of the migration apparatus and form bicarbonate transport metabolon with CA IX. Moreover, CA IX physically interacts with AE2 and NBCe1 in situ, as shown here for the first time. Thus, our findings suggest that CA IX actively contributes to cell migration via its ability to facilitate ion transport and pH control at protruding fronts of moving cells.
Assuntos
Proteínas de Transporte de Ânions/metabolismo , Antígenos de Neoplasias/biossíntese , Antiporters/metabolismo , Anidrases Carbônicas/biossíntese , Movimento Celular/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Pseudópodes/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Antígenos de Neoplasias/genética , Antiporters/genética , Bicarbonatos/metabolismo , Anidrase Carbônica IX , Anidrases Carbônicas/genética , Hipóxia Celular/fisiologia , Células HeLa , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Transporte de Íons/fisiologia , Estrutura Terciária de Proteína , Pseudópodes/genética , Proteínas SLC4A , Simportadores de Sódio-Bicarbonato/genética , Regulação para Cima/fisiologiaRESUMO
The coupled action of the Na(+)/H(+) exchanger NHE1 and the HCO3(-)/Cl(-) exchanger AE2 constitutes the principal mechanism for acute correction of decreased cell volume in mammalian somatic cells, while, when acting separately, they regulate intracellular pH. It was previously found that AE2 becomes inactivated during meiosis in mouse oocytes. Similarly, NHE1 activity stimulated by intracellular acidosis was present in preovulatory germinal vesicle stage (GV) mouse oocytes and then decreased during meiotic maturation. In contrast, NHE1 activity stimulated by decreased cell volume was low in GV oocytes but became active during meiotic maturation as the oocyte detached from the zona pellucida. It then decreased again in mature eggs similar to activity stimulated by acidosis. The subcellular localization of NHE1 was investigated with YFP-tagged NHE1. Exogenous NHE1 expressed in GV oocytes localized to the plasma membrane and resulted in increased Na(+)/H(+) exchanger activity, but only when co-expressed with calcineurin homologous protein 1 (CHP1). When oocytes expressing functional NHE1 were matured to eggs, however, membrane localization of NHE1 and Na(+)/H(+) exchanger activity were lost. It was unknown why NHE1 and AE2 activities are suppressed during meiotic maturation. Maintenance of cell volume in preimplantation embryos requires glycine accumulation via the GLYT1 transporter, a process unique to eggs and early embryos that is initiated during meiotic maturation. When NHE1 and AE2 activities were maintained in GV oocytes by exogenous expression, glycine accumulation was inhibited. We propose that NHE1-mediated acute cell volume regulation is inactivated during meiotic maturation to allow preferential accumulation of glycine in eggs.
Assuntos
Glicina/metabolismo , Meiose/fisiologia , Oócitos/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Antiporters/genética , Antiporters/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Tamanho Celular , Feminino , Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Concentração de Íons de Hidrogênio , Meiose/genética , Camundongos , Oócitos/metabolismo , Ratos , Proteínas SLC4A , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genéticaRESUMO
Bone lengthening during skeletal growth is driven primarily by the controlled enlargement of growth plate (GP) chondrocytes. The cellular mechanisms are unclear but membrane transporters are probably involved. We investigated the role of the Na(+)/H(+) antiporter (NHE1) and anion exchanger (AE2) in bone lengthening and GP chondrocyte hypertrophy in Sprague-Dawley 7-day-old rat (P7) bone rudiments using the inhibitors EIPA (5-(N-ethyl-N-isopropyl)amiloride) and DIDS (4,4-diidothiocyano-2,2-stilbenedisulphonate), respectively. We have also determined cell-associated levels of these transporters along the GP using fluorescent immunohistochemistry (FIHC). Culture of bones with EIPA or DIDS inhibited rudiment growth (50% at approx. 250 and 25 µM, respectively). Both decreased the size of the hypertrophic zone (P < 0.05) but had no effect on overall length or cell density of the GP. In situ chondrocyte volume in proliferative and hypertrophic zones was decreased (P < 0.01) with EIPA but not DIDS. FIHC labeling of NHE1 was relatively high and constant along the GP but declined steeply in the late hypertrophic zone. In contrast, AE2 labeling was relatively low in proliferative zone cells but increased (P < 0.05) reaching a maximum in the early hypertrophic zone, before falling rapidly in the late hypertrophic zone suggesting AE2 might regulate the transition phase of chondrocytes between proliferative and hypertrophic zones. The inhibition of bone growth by EIPA may be due to a reduction to chondrocyte volume set-point. However the effect of DIDS was unclear but could result from inhibition of AE2 and blocking of the transition phase. These results demonstrate that NHE1 and AE2 are important regulators of bone growth.
Assuntos
Proteínas de Transporte de Ânions/metabolismo , Antiporters/metabolismo , Desenvolvimento Ósseo/efeitos dos fármacos , Lâmina de Crescimento/metabolismo , Osteogênese/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/enzimologia , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Lâmina de Crescimento/citologia , Lâmina de Crescimento/efeitos dos fármacos , Moduladores de Transporte de Membrana/antagonistas & inibidores , Moduladores de Transporte de Membrana/metabolismo , Ossos do Metatarso , Técnicas de Cultura de Órgãos , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas SLC4A , Trocador 1 de Sódio-HidrogênioRESUMO
UNLABELLED: Cl(-) /HCO3- anion exchanger 2 (AE2) participates in intracellular pH homeostasis and secretin-stimulated biliary bicarbonate secretion. AE2/SLC4A2 gene expression is reduced in liver and blood mononuclear cells from patients with primary biliary cirrhosis (PBC). Our previous findings of hepatic and immunological features mimicking PBC in Ae2-deficient mice strongly suggest that decreased AE2 expression might be involved in the pathogenesis of PBC. Here, we tested the potential role of microRNA 506 (miR-506) - predicted as candidate to target AE2 mRNA - for the decreased expression of AE2 in PBC. Real-time quantitative polymerase chain reaction showed that miR-506 expression is increased in PBC livers versus normal liver specimens. In situ hybridization in liver sections confirmed that miR-506 is up-regulated in the intrahepatic bile ducts of PBC livers, compared with normal and primary sclerosing cholangitis livers. Precursor-mediated overexpression of miR-506 in SV40-immortalized normal human cholangiocytes (H69 cells) led to decreased AE2 protein expression and activity, as indicated by immunoblotting and microfluorimetry, respectively. Moreover, miR-506 overexpression in three-dimensional (3D)-cultured H69 cholangiocytes blocked the secretin-stimulated expansion of cystic structures developed under the 3D conditions. Luciferase assays and site-directed mutagenesis demonstrated that miR-506 specifically may bind the 3'untranslated region (3'UTR) of AE2 messenger RNA (mRNA) and prevent protein translation. Finally, cultured PBC cholangiocytes showed decreased AE2 activity, together with miR-506 overexpression, compared to normal human cholangiocytes, and transfection of PBC cholangiocytes with anti-miR-506 was able to improve their AE2 activity. CONCLUSION: miR-506 is up-regulated in cholangiocytes from PBC patients, binds the 3'UTR region of AE2 mRNA, and prevents protein translation, leading to diminished AE2 activity and impaired biliary secretory functions. In view of the putative pathogenic role of decreased AE2 in PBC, miR-506 may constitute a potential therapeutic target for this disease.
Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Antiporters/genética , Antiporters/metabolismo , Ductos Biliares Intra-Hepáticos/fisiopatologia , Cirrose Hepática Biliar , MicroRNAs/metabolismo , Bicarbonatos/metabolismo , Ductos Biliares Intra-Hepáticos/citologia , Ductos Biliares Intra-Hepáticos/metabolismo , Linhagem Celular Tumoral , Antiportadores de Cloreto-Bicarbonato , Cloretos/metabolismo , Simulação por Computador , Epitélio/fisiologia , Humanos , Cirrose Hepática Biliar/genética , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/fisiopatologia , MicroRNAs/genética , Cultura Primária de Células , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Proteínas SLC4A , Regulação para Cima/genéticaRESUMO
UNLABELLED: Human cholangiocytes are continuously exposed to millimolar levels of hydrophobic bile salt monomers. We recently hypothesized that an apical biliary HCO3- umbrella might prevent the protonation of biliary glycine-conjugated bile salts and uncontrolled cell entry of the corresponding bile acids, and that defects in this biliary HCO3- umbrella might predispose to chronic cholangiopathies. Here, we tested in vitro whether human cholangiocyte integrity in the presence of millimolar bile salt monomers is dependent on (1) pH, (2) adequate expression of the key HCO3- exporter, anion exchanger 2 (AE2), and (3) an intact cholangiocyte glycocalyx. To address these questions, human immortalized cholangiocytes and cholangiocarcinoma cells were exposed to chenodeoxycholate and its glycine/taurine conjugates at different pH levels. Bile acid uptake was determined radiochemically. Cell viability and apoptosis were measured enzymatically. AE2 was knocked down by lentiviral short hairpin RNA. A cholangiocyte glycocalyx was identified by electron microscopy, was enzymatically desialylated, and sialylation was quantified by flow cytometry. We found that bile acid uptake and toxicity in human immortalized cholangiocytes and cholangiocarcinoma cell lines in vitro were pH and AE2 dependent, with the highest rates at low pH and when AE2 expression was defective. An apical glycocalyx was identified on cholangiocytes in vitro by electron microscopic techniques. Desialylation of this protective layer increased cholangiocellular vulnerability in a pH-dependent manner. CONCLUSION: A biliary HCO3- umbrella protects human cholangiocytes against damage by bile acid monomers. An intact glycocalyx and adequate AE2 expression are crucial in this process. Defects of the biliary HCO3- umbrella may lead to the development of chronic cholangiopathies.
Assuntos
Ácidos e Sais Biliares/farmacocinética , Ácidos e Sais Biliares/toxicidade , Ductos Biliares Intra-Hepáticos/efeitos dos fármacos , Ductos Biliares Intra-Hepáticos/metabolismo , Bicarbonato de Sódio/farmacologia , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Antiporters/genética , Antiporters/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Neoplasias dos Ductos Biliares , Ductos Biliares Intra-Hepáticos/citologia , Linhagem Celular Tumoral , Colangiocarcinoma , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Espaço Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Glicocálix/metabolismo , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Microscopia Eletrônica , Neuraminidase/farmacologia , Proteínas SLC4ARESUMO
Anion exchanger type 2 (AE2 or SLC4A2) is an electroneutral Cl(-)/HCO(3)(-) exchanger expressed at the basolateral membrane of many epithelia. It is thought to participate in fluid secretion by airway epithelia. However, the role of AE2 in fluid secretion remains uncertain, due to the lack of specific pharmacological inhibitors, and because it is electrically silent and therefore does not contribute directly to short-circuit current (I(sc)). We have studied the role of AE2 in Cl(-) and fluid secretion by the airway epithelial cell line Calu-3. After confirming expression of its mRNA and protein, a knock-down cell line called AE2-KD was generated by lentivirus-mediated RNA interference in which AE2 mRNA and protein levels were reduced 90%. Suppressing AE2 increased the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) by â¼70% without affecting the levels of NKCC1 (Na(+)-K(+)-2Cl(-) cotransporter) or NBCe1 (Na(+)-nHCO(3)(-) cotransporter). cAMP agonists stimulated fluid secretion by parental Calu-3 and scrambled shRNA cells >6.5-fold. In AE2-KD cells this response was reduced by â¼70%, and the secreted fluid exhibited elevated pH and [HCO(3)(-)] as compared with the control lines. Unstimulated equivalent short-circuit current (I(eq)) was elevated in AE2-KD cells, but the incremental response to forskolin was unaffected. The modest bumetanide-induced reductions in both I(eq) and fluid secretion were more pronounced in AE2-KD cells. Basolateral Cl(-)/HCO(3)(-) exchange measured by basolateral pH-stat in cells with permeabilized apical membranes was abolished in AE2-KD monolayers, and the intracellular alkalinization resulting from basolateral Cl(-) removal was reduced by â¼80% in AE2-KD cells. These results identify AE2 as a major pathway for basolateral Cl(-) loading during cAMP-stimulated secretion of Cl(-) and fluid by Calu-3 cells, and help explain the large bumetanide-insensitive component of fluid secretion reported previously in airway submucosal glands and some other epithelia.
Assuntos
Proteínas de Transporte de Ânions/fisiologia , Antiporters/fisiologia , Células Epiteliais/metabolismo , Líquido Intracelular/metabolismo , Bicarbonatos/metabolismo , Bumetanida/farmacologia , Linhagem Celular , Antiportadores de Cloreto-Bicarbonato , Cloretos/metabolismo , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Transporte de Íons , RNA Interferente Pequeno/genética , Sistema Respiratório/citologia , Sistema Respiratório/metabolismo , Proteínas SLC4A , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologiaRESUMO
Transcellular bicarbonate transport is suspected to be an important pathway used by ameloblasts to regulate extracellular pH and support crystal growth during enamel maturation. Proteins that play a role in amelogenesis include members of the ABC transporters (SLC gene family and CFTR). A number of carbonic anhydrases (CAs) have also been identified. The defined functions of these genes are likely interlinked during enamel mineralization. The purpose of this study is to quantify relative mRNA levels of individual SLC, Cftr, and CAs in enamel cells obtained from secretory and maturation stages on rat incisors. We also present novel data on the enamel phenotypes for two animal models, a mutant porcine (CFTR-ΔF508) and the NBCe1-null mouse. Our data show that two SLCs (AE2 and NBCe1), Cftr, and Car2, Car3, Car6, and Car12 are all significantly up-regulated at the onset of the maturation stage of amelogenesis when compared to the secretory stage. The remaining SLCs and CA gene transcripts showed negligible expression or no significant change in expression from secretory to maturation stages. The enamel of CFTR-ΔF508 adult pigs was hypomineralized and showed abnormal crystal growth. NBCe1-null mice enamel was structurally defective and had a marked decrease in mineral content relative to wild-type. These data demonstrate the importance of many non-matrix proteins to amelogenesis and that the expression levels of multiple genes regulating extracellular pH are modulated during enamel maturation in response to an increased need for pH buffering during hydroxyapatite crystal growth.
Assuntos
Esmalte Dentário/crescimento & desenvolvimento , Esmalte Dentário/metabolismo , Amelogênese/genética , Amelogênese/fisiologia , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Antiporters/genética , Antiporters/metabolismo , Sequência de Bases , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Primers do DNA/genética , Esmalte Dentário/anormalidades , Concentração de Íons de Hidrogênio , Transporte de Íons , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Proteínas SLC4A , Simportadores de Sódio-Bicarbonato/deficiência , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Trocador de Sódio e Cálcio/genética , Sus scrofaRESUMO
Guanylin, a bioactive intestinal peptide, is involved in the cystic fibrosis transmembrane conductance (CFTR)-regulated electrolyte/water secretion in various epithelia. In the present work we report on the expression and cellular localization of guanylin and its affiliated signaling and effector proteins, including guanylate cyclase C (Gucy2c), Proteinkinase GII (Pkrg2), CFTR and the solute carrier family 4, anion exchanger, member 2 (Slc4a2) in the hepatobiliary system of rat and guinea pig. Localization studies in the liver and the gallbladder revealed that guanylin is located in the secretory epithelial cells of bile ducts of the liver and of the gallbladder, while Gucy2c, Pkrg2, CFTR, and Slc4a2 are confined exclusively to the apical membrane of the same epithelial cells. Based on these findings, we assume that guanylin is synthesized as an intrinsic peptide in epithelial cells of the hepatobiliary system and released luminally into the hepatic and cystic bile to regulate electrolyte secretion by a paracrine/luminocrine signaling pathway.
Assuntos
Vesícula Biliar/metabolismo , Hormônios Gastrointestinais/metabolismo , Fígado/metabolismo , Peptídeos Natriuréticos/metabolismo , Animais , Proteínas de Transporte de Ânions/análise , Proteínas de Transporte de Ânions/metabolismo , Antiporters/análise , Antiporters/metabolismo , Antiportadores de Cloreto-Bicarbonato , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/química , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Vesícula Biliar/química , Vesícula Biliar/citologia , Hormônios Gastrointestinais/análise , Hormônios Gastrointestinais/biossíntese , Guanilato Ciclase/análise , Guanilato Ciclase/metabolismo , Cobaias , Fígado/química , Fígado/citologia , Peptídeos Natriuréticos/análise , Peptídeos Natriuréticos/biossíntese , Ratos , Ratos Wistar , Proteínas SLC4A , Transdução de SinaisRESUMO
Osteoclasts are multinucleated bone-resorbing cells responsible for constant remodeling of bone tissue and for maintaining calcium homeostasis. The osteoclast creates an enclosed space, a lacuna, between their ruffled border membrane and the mineralized bone. They extrude H(+) and Cl(-) into these lacunae by the combined action of vesicular H(+)-ATPases and ClC-7 exchangers to dissolve the hydroxyapatite of bone matrix. Along with intracellular production of H(+) and HCO(3)(-) by carbonic anhydrase II, the H(+)-ATPases and ClC-7 exchangers seems prerequisite for bone resorption, because genetic disruption of either of these proteins leads to osteopetrosis. We aimed to complete the molecular model for lacunar acidification, hypothesizing that a HCO(3)(-) extruding and Cl(-) loading anion exchange protein (Ae) would be necessary to sustain bone resorption. The Ae proteins can provide both intracellular pH neutrality and serve as cellular entry mechanism for Cl(-) during bone resorption. Immunohistochemistry revealed that Ae2 is exclusively expressed at the contra-lacunar plasma membrane domain of mouse osteoclast. Severe osteopetrosis was encountered in Ae2 knockout (Ae2-/-) mice where the skeletal development was impaired with a higher diffuse radio-density on x-ray examination and the bone marrow cavity was occupied by irregular bone speculae. Furthermore, osteoclasts in Ae2-/- mice were dramatically enlarged and fail to form the normal ruffled border facing the lacunae. Thus, Ae2 is likely to be an essential component of the bone resorption mechanism in osteoclasts.
Assuntos
Proteínas de Transporte de Ânions/genética , Antiporters/genética , Osteopetrose/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica , Osteoclastos/citologia , Fenótipo , Ratos , Ratos Wistar , Proteínas SLC4ARESUMO
Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 µM; more than 500 µM caused cytotoxicity. The 250 µM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels.