Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Genet ; 11(3): e1005113, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25815716

RESUMO

Ribosomal RNA synthesis is controlled by nutrient signaling through the mechanistic target of rapamycin complex 1 (mTORC1) pathway. mTORC1 regulates ribosomal RNA expression by affecting RNA Polymerase I (Pol I)-dependent transcription of the ribosomal DNA (rDNA) but the mechanisms involved remain obscure. This study provides evidence that the Ccr4-Not complex, which regulates RNA Polymerase II (Pol II) transcription, also functions downstream of mTORC1 to control Pol I activity. Ccr4-Not localizes to the rDNA and physically associates with the Pol I holoenzyme while Ccr4-Not disruption perturbs rDNA binding of multiple Pol I transcriptional regulators including core factor, the high mobility group protein Hmo1, and the SSU processome. Under nutrient rich conditions, Ccr4-Not suppresses Pol I initiation by regulating interactions with the essential transcription factor Rrn3. Additionally, Ccr4-Not disruption prevents reduced Pol I transcription when mTORC1 is inhibited suggesting Ccr4-Not bridges mTORC1 signaling with Pol I regulation. Analysis of the non-essential Pol I subunits demonstrated that the A34.5 subunit promotes, while the A12.2 and A14 subunits repress, Ccr4-Not interactions with Pol I. Furthermore, ccr4Δ is synthetically sick when paired with rpa12Δ and the double mutant has enhanced sensitivity to transcription elongation inhibition suggesting that Ccr4-Not functions to promote Pol I elongation. Intriguingly, while low concentrations of mTORC1 inhibitors completely inhibit growth of ccr4Δ, a ccr4Δ rpa12Δ rescues this growth defect suggesting that the sensitivity of Ccr4-Not mutants to mTORC1 inhibition is at least partially due to Pol I deregulation. Collectively, these data demonstrate a novel role for Ccr4-Not in Pol I transcriptional regulation that is required for bridging mTORC1 signaling to ribosomal RNA synthesis.


Assuntos
Complexos Multiproteicos/genética , RNA Polimerase I/biossíntese , Ribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina-Treonina Quinases TOR/genética , Transcrição Gênica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/genética , RNA Polimerase II/biossíntese , RNA Polimerase II/genética , RNA Ribossômico/biossíntese , Ribonucleases/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Nat Cell Biol ; 6(12): 1165-72, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15558034

RESUMO

The presence of actin and nuclear myosin I (NMI) in the nucleus suggests a role for these motor proteins in nuclear functions. We have investigated the role of actin and nuclear myosin I (NMI) in the transcription of ribosomal RNA genes (rDNA). Both proteins are associated with rDNA and are required for RNA polymerase I (Pol I) transcription. Microinjection of antibodies against actin or NMI, as well as short interfering RNA-mediated depletion of NMI, decreased Pol I transcription in vivo, whereas overexpression of NMI augmented pre-rRNA synthesis. In vitro, recombinant NMI activated Pol I transcription, and antibodies to NMI or actin inhibited Pol I transcription both on naked DNA and pre-assembled chromatin templates. Whereas actin associated with Pol I, NMI bound to Pol I through the transcription-initiation factor TIF-IA. The association with Pol I requires phosphorylation of TIF-IA at Ser 649 by RSK kinase, indicating a role for NMI in the growth-dependent regulation of rRNA synthesis.


Assuntos
Actinas/metabolismo , Núcleo Celular/metabolismo , Miosina Tipo I/metabolismo , RNA Polimerase I/biossíntese , RNA Ribossômico/biossíntese , Transcrição Gênica/genética , Anticorpos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , DNA Ribossômico/genética , Humanos , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Ligação Proteica/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Interferência de RNA , RNA Polimerase I/genética , RNA Ribossômico/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases S6 Ribossômicas , Serina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mol Cell Biol ; 16(11): 5985-96, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8887628

RESUMO

Eukaryotic nuclear RNA polymerases (RNAPs) are composed of two large subunits and a number of small polypeptides, some of which are common among these enzymes. To understand the function of Rpo26p, one of the five subunits common to yeast RNAPs, 34 different mutations have been isolated in RP026 that cause cell death in a strain carrying a temperature-sensitive (ts) mutation in the gene (RP021) encoding the largest subunit of RNAPII. These mutant alleles were grouped into three phenotypic classes (null, ts, and neutral) on the basis of the phenotype they imposed in combination with wild-type RP021. The function of Rpo26p was addressed by biochemical analysis of the ts rpo26-31 allele. The steady-state level of rpo26-31p was reduced at high temperature; this was accompanied by a decrease in the level of at least two other subunits, the largest subunits of RNAPI (A190p) and RNAPII (Rpo21p). Pulse-chase metabolic labeling and immunoprecipitation of RNAPII showed that at high temperature, rpo26-31 did not lead to dissociation of Rpo26p from the polymerase but prevented the assembly of RNAPII. Overexpression of rpo26-31 partially suppressed the ts phenotype and led to accumulation of the mutant subunit. However, overexpression only marginally suppressed the assembly defect of RNAPII. Furthermore, A190p and Rpo21p continued to accumulate at low levels under these conditions. We suggest that Rpo26p is essential for the assembly of RNAPI and RNAPII and for the stability of the largest subunits of these enzymes.


Assuntos
Proteínas Fúngicas/biossíntese , RNA Polimerase II/biossíntese , RNA Polimerase I/biossíntese , Saccharomyces cerevisiae/enzimologia , Alelos , Sequência de Aminoácidos , Animais , Proteínas Fúngicas/química , Expressão Gênica , Genes Fúngicos , Genótipo , Humanos , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutagênese , Fenótipo , Plasmídeos , RNA Polimerase I/química , RNA Polimerase II/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos , Temperatura
4.
Mol Cell Biol ; 16(10): 5821-9, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8816496

RESUMO

The organization of eukaryotic chromosomes into topological domains has led to the assumption that DNA topology and perhaps supercoiling are involved in eukaryotic nuclear processes. Xenopus oocytes provide a model system for studying the role of DNA topology in transcription. Linear plasmid templates for RNA polymerases (Pols) I and II are not transcribed in Xenopus oocytes, while circular templates are transcriptionally active. Here we show that circularity is not required for transcription of Pol I or Pol II promoters if the linear template is sufficiently long (> 17 to 19 kb). The Xenopus rRNA (Pol I) promoter is active in central positions on a long linear template but is not transcribed when located near an end. Because supercoils generated by transcription could be retained by viscous drag against the long template, these results are consistent with a supercoiling requirement for this promoter. Surprisingly, the herpes simplex virus thymidine kinase (Pol II) promoter is active even 100 bp from the end of the long template, indicating that template length fulfills a critical parameter for transcription that is not consistent with a supercoiling requirement. These results show that DNA length has unrecognized importance for transcription in vivo.


Assuntos
Plasmídeos/química , Plasmídeos/metabolismo , RNA Polimerase II/biossíntese , RNA Polimerase I/biossíntese , Timidina Quinase/biossíntese , Transcrição Gênica , Animais , Sequência de Bases , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Feminino , Oócitos/fisiologia , Regiões Promotoras Genéticas , Mapeamento por Restrição , Simplexvirus/enzimologia , Simplexvirus/genética , Moldes Genéticos , Timidina Quinase/genética , Xenopus laevis
5.
Mol Cell Biol ; 9(6): 2500-12, 1989 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-2761537

RESUMO

Human rRNA precursor from normal or stressed HeLa cells were studied by S1 nuclease mapping of unlabeled RNA and by antisense RNase mapping of RNA from cells that had been labeled in vivo with [32P]PO4. Heating cells to 43 degrees C decreased the amount of newly synthesized rRNA to less than 5% of the control level and led to greater than 95% inhibition of transcription termination at a region 355 to 362 nucleotides downstream of the 3' end of 28S rRNA, with readthrough continuing into the next transcription unit. Heating of cells to 42 degrees C led to 60% inhibition of termination at this site; 50% of transcripts that extended into the nontranscribed spacer ended in a region 200 to 210 nucleotides upstream of the polymerase I (Pol I) initiation site. This is presumed to be the human upstream transcription termination site because of the absence of RNAs with a 5' end corresponding to this region, the location relative to the Pol I initiation site (which is similar to the location of upstream terminators in other species), and the fact that it is 15 to 25 nucleotides upstream of the sequence GGGTTGACC, which has an 8-of-9 base identity with the sequence 3' of the downstream termination site. Surprisingly, treatment of cells with sodium arsenite, which also leads to the induction of a stress response, did not inhibit termination. Pol I initiation was decreased to the same extent as termination, which lends support to the hypothesis that termination and initiation are coupled. Although termination was almost completely inhibited at 43 degrees C, the majority of the recently synthesized rRNAs were processed to have the correct 3' end of 28S. This finding suggests that 3'-end formation can involve an endonucleolytic cut and is not solely dependent on exonucleolytic trimming of correctly terminated rRNAs.


Assuntos
Genes Reguladores , Temperatura Alta , RNA Polimerase I/genética , Precursores de RNA/genética , Regiões Terminadoras Genéticas , Transcrição Gênica , Animais , Arseniatos/farmacologia , Sequência de Bases , DNA/genética , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Mapeamento de Nucleotídeos , Plasmídeos , RNA Polimerase I/biossíntese , RNA Ribossômico 28S/genética , Ribonucleases , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica/efeitos dos fármacos
6.
Nucleic Acids Res ; 29(2): 423-9, 2001 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11139612

RESUMO

Termination of murine rDNA transcription by RNA polymerase I (Pol I) requires pausing of Pol I by terminator-bound TTF-I (transcription termination factor for Pol I), followed by dissociation of the ternary complex by PTRF (Pol I and transcript release factor). To examine the functional correlation between transcription termination and initiation, we have compared transcription on terminator-containing and terminator-less rDNA templates. We demonstrate that terminated RNA molecules are more efficiently synthesized than run-off transcripts, indicating that termination facilitates reinitiation. Transcriptional enhancement is observed in multiple- but not single-round transcription assays measuring either promoter-dependent or promoter-independent Pol I transcription. Increased synthesis of terminated transcripts is observed in crude extracts but not in a PTRF-free reconstituted transcription system, indicating that PTRF-mediated release of pre-rRNA is responsible for transcriptional enhancement. Consistent with PTRF serving an important role in modulating the efficiency of rRNA synthesis, PTRF exhibits pronounced charge heterogeneity, is phosphorylated at multiple sites and fractionates into transcriptionally active and inactive forms. The results suggest that regulation of PTRF activity may be an as yet unrecognized means to control the efficiency of ribosomal RNA synthesis.


Assuntos
RNA Polimerase I/genética , Proteínas de Ligação a RNA/fisiologia , Ribossomos/genética , Transcrição Gênica , Células 3T3 , Animais , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Membrana , Camundongos , Fosforilação , RNA Polimerase I/biossíntese , RNA Polimerase I/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/enzimologia , Moldes Genéticos , Fatores de Transcrição
7.
Oncogene ; 19(43): 4988-99, 2000 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-11042686

RESUMO

We have previously demonstrated that the protein encoded by the retinoblastoma susceptibility gene (Rb) functions as a regulator of transcription by RNA polymerase I (rDNA transcription) by inhibiting UBF-mediated transcription. In the present study, we have examined the mechanism by which Rb represses UBF-dependent rDNA transcription and determined if other Rb-like proteins have similar effects. We demonstrate that authentic or recombinant UBF and Rb interact directly and this requires a functional A/B pocket. DNase footprinting and band-shift assays demonstrated that the interaction between Rb and UBF does not inhibit the binding of UBF to DNA. However, the formation of an UBF/Rb complex does block the interaction of UBF with SL-1, as indicated by using the 48 kDa subunit as a marker for SL-1. Additional evidence is presented that another pocket protein, p130 but not p107, can be found in a complex with UBF. Interestingly, the cellular content of p130 inversely correlated with the rate of rDNA transcription in two physiological systems, and overexpression of p130 inhibited rDNA transcription. These results suggest that p130 may regulate rDNA transcription in a similar manner to Rb.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/fisiologia , Fosfoproteínas/fisiologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Proteínas , RNA Polimerase I/genética , Proteína do Retinoblastoma/fisiologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Animais , Sítios de Ligação , Linhagem Celular , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , RNA Polimerase I/biossíntese , Proteína p107 Retinoblastoma-Like , Proteína p130 Retinoblastoma-Like , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia
8.
Oncogene ; 17(25): 3365-83, 1998 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-9916999

RESUMO

The retinoblastoma family of proteins, also known as pocket proteins, includes the product of the retinoblastoma susceptibility gene and the functionally and structurally related proteins p107 and p130. Pocket proteins control growth processes in many cell types, and this has been linked to the ability of pocket proteins to interact with a multitude of cellular proteins that regulate gene expression at various levels. By regulating gene expression, pocket proteins control cell cycle progression, cell cycle entry and exit, cell differentiation and apoptosis. This review will focus on the mechanisms of regulation of pocket proteins and how modulation of pocket protein levels and phosphorylation status regulate association with their cellular targets. The coordinated regulation of pocket proteins provides the cells with a competence mechanism for passage through certain cell growth and differentiation transitions.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Proteínas Nucleares/fisiologia , Fosfoproteínas/fisiologia , Proteínas , Proteína do Retinoblastoma/fisiologia , Animais , Diferenciação Celular/genética , Divisão Celular , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/fisiologia , Ciclinas/metabolismo , Ciclinas/fisiologia , Fatores de Transcrição E2F , Ativação Enzimática , Histona Desacetilases/fisiologia , Humanos , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , RNA Polimerase I/biossíntese , RNA Polimerase III/biossíntese , Proteína do Retinoblastoma/metabolismo , Proteína 1 de Ligação ao Retinoblastoma , Proteína p107 Retinoblastoma-Like , Proteína p130 Retinoblastoma-Like , Fator de Transcrição DP1 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
9.
Biochim Biophys Acta ; 1288(1): M1-5, 1996 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-8764839

RESUMO

pRB interacts with a number of transcription factors and can both directly and indirectly modulate transcriptional activity. Growth suppression by pRB is tightly linked to its ability to form complexes with E2F which are capable of repressing transcription of certain genes required for S phase. The ability of pRB to enhance the activity of several non-E2F transcription factors might suggest a mechanism by which pRB could coordinately regulate sets of genes at or near the restriction point. Specifically, complexes consisting of underphosphorylated pRB and E2F, by virtue of transcriptional repression of promoters containing E2F sites, would act to block entry into S phase. At the same time, distinct complexes of underphosphorylated pRB and transcription factors such as the glucocorticoid receptor, ATF-2, or MyoD, might lead to an increase in the transcription of genes required for differentiation or for additional growth inhibitory functions (e.g. TGF-beta 1). Changes in the activities of various cyclin-dependent kinase complexes would lead to phosphorylation of pRB and thus coordinate a release of S phase genes from repression with a loss of activation of differentiation genes. While this model is speculative, the role of pRB as a transcriptional modulator, as well as its interactions with cell-cycle regulatory kinases, places it in a position to integrate extracellular and intracellular growth signals and to transduce those signals into changes in gene transcription which ultimately influence cell growth and differentiation.


Assuntos
Proteína do Retinoblastoma/fisiologia , Transcrição Gênica/fisiologia , Humanos , RNA Polimerase I/biossíntese , RNA Polimerase II/biossíntese
10.
Cell Biochem Biophys ; 37(1): 1-13, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12398413

RESUMO

In order to further characterize the previously observed disruptive effect of the RNA polymerase I promoter sequence (Pol I) from Acanthamoeba castellanii on tandemly repeated 5S rDNA positioning sequences from sea urchin (Lytechinus variegatus), we compared the histone-binding ability of the isolated 199-bp Pol I promoter region to that of the 208-bp 5S rDNA and that of nucleosome core particle sequences isolated from chicken erythocytes. We found the 5S rDNA positioning sequence to be more efficient at forming nucleosomes than the RNA polymerase I promoter sequence. Nevertheless, examination of the free-DNA half-depletion points during the titrations suggested that twice as much histone had bound to the RNA polymerase I promoter sequence as to the 5S nucleosome-positioning or core particle sequences. DNA bending analysis suggested two potential DNA bending loci in the RNA polymerase I promoter, whereas only one such locus was predicted for the 5S positioning sequence. Such mixed bending signals on the RNA polymerase I promoter could favor non-nucleosomal deposition of histones on these sequences.


Assuntos
DNA Ribossômico/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , RNA Polimerase I/biossíntese , Acanthamoeba , Animais , Sequência de Bases , Eletroforese em Gel de Poliacrilamida , Modelos Genéticos , Dados de Sequência Molecular , Nucleossomos/efeitos dos fármacos , Ácido Poliglutâmico/farmacologia , Regiões Promotoras Genéticas , RNA Ribossômico 5S/biossíntese , Ouriços-do-Mar
11.
J Chromatogr B Analyt Technol Biomed Life Sci ; 800(1-2): 121-6, 2004 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-14698245

RESUMO

Four subunits of Schizosaccharomyces pombe RNA polymerases I-III shared by all three enzymes (Rpb5, Rpb8, Rpb10 and Rpc10 [Rpb12]) have been overexpressed in Escherichia coli expression vectors pQE or pET as hexahistidine fusions. The recombinant proteins have been purified to near homogeneity using metal-chelate affinity chromatography and gel filtration. Homogeneity and identity of the purified protein preparations was demonstrated by denaturing polyacrylamide gel electrophoresis and TOF-MALDI mass spectrometry. The proteins were obtained in large amounts, and their preparations are currently in use for monoclonal antibody production and physico-chemical studies of these individual components of eukaryotic transcription enzymes.


Assuntos
RNA Polimerase III/biossíntese , RNA Polimerase III/isolamento & purificação , RNA Polimerase II/biossíntese , RNA Polimerase II/isolamento & purificação , RNA Polimerase I/biossíntese , RNA Polimerase I/isolamento & purificação , Schizosaccharomyces/enzimologia , Schizosaccharomyces/metabolismo , Núcleo Celular/química , Núcleo Celular/metabolismo , Fenômenos Químicos , Físico-Química , Cromatografia de Afinidade , Cromatografia em Gel , Clonagem Molecular , Cobalto/química , DNA Complementar/biossíntese , DNA Complementar/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Vetores Genéticos , Níquel/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
12.
Cell Cycle ; 6(1): 11-5, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17245116

RESUMO

Regulation of growth ultimately depends on the control of synthesis of new ribosomes. Ribosome biogenesis is thus a key element of cell biology, which is tightly regulated in response to environmental conditions. In eukaryotic cells, the supply of ribosomal components involves the activities of the three forms of nuclear RNA polymerase (Pol I, Pol II and Pol III). Recently, we demonstrated that upon rapamycin treatment, a partial derepression of Pol I transcription led to a concomitant derepression of Pol II transcription restricted to a small subset of class II genes encompassing the genes encoding all ribosomal proteins, and 19 additional genes. The products of 14 of these 19 genes are principally involved in rDNA structure, ribosome biogenesis or translation, whereas the five remaining genes code for hypothetical proteins. We demonstrate that the proteins encoded by these five genes are required for optimal pre-rRNA processing. In addition, we show that cells in which regulation of Pol I transcription was specifically impaired are either resistant or hypersensitive to different stresses compared to wild-type cells. These results highlight the critical role of the regulation of Pol I activity for the physiology of the cells.


Assuntos
RNA Polimerase I/biossíntese , RNA Polimerase I/genética , Ribossomos/enzimologia , Transcrição Gênica/fisiologia , Animais , Humanos , RNA Polimerase I/fisiologia , Ribossomos/genética
13.
Mol Cell ; 21(5): 629-39, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16507361

RESUMO

Synthesis of the 45S rRNA by RNA polymerase I limits cell growth. Knowledge of the mechanism of its regulation is therefore key to understanding growth control. rRNA transcription is believed to be regulated solely at initiation/promoter release. However, we found that stimulation of endogenous 45S rRNA synthesis by epidermal growth factor (EGF) and serum failed to induce an increase in RNA polymerase I engagement on the rRNA genes, despite robust enhancement of 45S rRNA synthesis. Further, endogenous transcription elongation rates were measured and found to be directly proportional to 45S rRNA synthesis. Thus, elongation is a rate-limiting step for rRNA synthesis in vivo. ERK phosphorylation of the HMG boxes of UBF, an RNA polymerase I factor essential for transcription enhancement, was shown to directly regulate elongation by inducing the remodeling of ribosomal gene chromatin. The data suggest a mechanism for coordinating the cotranscriptional assembly of preribosomal particles.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Substâncias de Crescimento/fisiologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/genética , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Animais , DNA Ribossômico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Camundongos , Células NIH 3T3 , Fosforilação , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , RNA Polimerase I/biossíntese , RNA Ribossômico/biossíntese
14.
EMBO Rep ; 7(5): 525-30, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16514417

RESUMO

Nuclear actin and myosin 1 (NM1) are key regulators of gene transcription. Here, we show by biochemical fractionation of nuclear extracts, protein-protein interaction studies and chromatin immunoprecipitation assays that NM1 is part of a multiprotein complex that contains WICH, a chromatin remodelling complex containing WSTF (Williams syndrome transcription factor) and SNF2h. NM1, WSTF and SNF2h were found to be associated with RNA polymerase I (Pol I) and ribosomal RNA genes (rDNA). RNA interference-mediated knockdown of NM1 and WSTF reduced pre-rRNA synthesis in vivo, and antibodies to WSTF inhibited Pol I transcription on pre-assembled chromatin templates but not on naked DNA. The results indicate that NM1 cooperates with WICH to facilitate transcription on chromatin.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miosina Tipo I/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase I/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Miosina Tipo I/química , Miosina Tipo I/genética , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Ligação Proteica/genética , RNA Polimerase I/biossíntese , RNA Polimerase I/química , Fatores de Transcrição/química , Fatores de Transcrição/genética
15.
J Cell Physiol ; 97(3 Pt 2 Suppl 1): 487-96, 1978 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-83325

RESUMO

Nuclei and nucleoli were isolated from rat livers subjected to an interruption of the blood supply for periods of different duration, as well as after restoration of the blood supply. They were assayed for RNA synthesis under conditions of diverse ionic strengths, and in the presence of an exogenous template, such as poly d (A-T), and actinomycin to inactivate the endogenous template; alpha-amanitin was made used of to distinguish polymerase I and polymerase II dependent RNA synthesis. Nuclei and nucleoli from ischemic livers showed a severe impairment of RNA synthesis, which is likely to be due to decreased initiation frequency of the engaged polymerases, while free polymerases were essentially unchanged. Both form I and II polymerase were equally involved. After restoration of the blood supply RNA synthesis recovered with an overshooting well above normal levels of activity, lasting for at least 24 hours. Increased RNA synthesis was not followed by thymidine incorporation into DNA.


Assuntos
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Isquemia/metabolismo , Fígado/irrigação sanguínea , RNA/biossíntese , Amanitinas/farmacologia , Animais , DNA/biossíntese , Dactinomicina/farmacologia , Fígado/metabolismo , Masculino , RNA Polimerase I/biossíntese , RNA Polimerase II/biossíntese , Ratos , Fatores de Tempo
16.
J Biol Chem ; 270(41): 24252-7, 1995 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-7592632

RESUMO

Yeast RNA polymerase I contains 14 distinct polypeptides, including A43, a component of about 43 kDa. The corresponding gene, RPA43, encodes a 326-amino acid polypeptide matching the peptidic sequence of two tryptic fragments isolated from A43. Gene inactivation leads to a lethal phenotype that is rescued by a plasmid containing the 35S ribosomal RNA gene fused to the GAL7 promoter, which allows the synthesis of 35S rRNA by RNA polymerase II in the presence of galactose. A screening for mutants rescued by the presence of GAL7-35SrDNA identified a nonsense rpa43 allele truncating the protein at amino acid position 217. [3H]Uridine pulse labeling showed that this mutation abolishes 35S rRNA synthesis without significant effects on the synthesis of 5 S RNA and tRNAs. These properties establish that A43 is an essential component of RNA polymerase I. This highly hydrophilic phosphoprotein has a strongly acidic carboxyl-terminal domain, and shows no homology to entries in current sequence data banks, including all the genetically identified components of the other two yeast RNA polymerases. RPA43 mapped next to RPA190, encoding the largest subunit of polymerase I. These genes are divergently transcribed and may thus share upstream regulatory elements ensuring their co-regulation.


Assuntos
Genes Fúngicos , RNA Polimerase I/biossíntese , RNA Polimerase I/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Eletroforese em Gel de Ágar , Substâncias Macromoleculares , Dados de Sequência Molecular , Fenótipo , Plasmídeos , Regiões Promotoras Genéticas , Conformação Proteica , RNA Polimerase I/química , RNA Fúngico/biossíntese , RNA Fúngico/isolamento & purificação , RNA Ribossômico/genética , Especificidade da Espécie
17.
Mol Gen Genet ; 180(2): 293-300, 1980.
Artigo em Inglês | MEDLINE | ID: mdl-7007812

RESUMO

Amber mutants of Escherichia coli K-12 affected in the structural gene (rpoD) for the sigma subunit of RNA polymerase have been obtained from a strain harboring a temperature-sensitive amber suppressor (supF-Ts6) which is active only at low temperatures. These mutants grow normally at low temperature (30 degrees C) but do not grow at high temperature (42 degrees C) due to the inability to synthesize sigma factor. In one mutant studied in detail (rpoD40), the rate of sigma-factor synthesis at 30 degrees C is about half that of the wild type and is decreased to 10%-15% within 1 h of incubation at 42 degrees C. The synthesis of core polymerase subunits or bulk protein is virtually unaffected at least for 2 h. The defect of the mutant in sigma synthesis and growth at high temperature can be suppressed by any of the amber suppressors tested (supD. supE or supF). RNA-polymerase holoenzymes prepared from the mutant cells carrying each of the suppressors (grown at 42 degrees C) exhibit different thermostabilities attributable to alterations in the sigma factor. The reduced sigma synthesis in the mutant is accompanied by the synthesis of polypeptide tentatively identified as 'amber fragment'. These results as well as the genetic mapping data indicate that the amber mutation (rpoD40) resides within the structural gene for the sigma factor and directly affects sigma synthesis upon inactivation of the suppressor at high temperature.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , RNA Polimerase I/genética , Fator sigma/genética , Fatores de Transcrição/genética , Mapeamento Cromossômico , Colífagos/genética , Genes , Mutação , RNA Polimerase I/biossíntese , Fator sigma/biossíntese , Supressão Genética , Temperatura , Transdução Genética
18.
J Biol Chem ; 261(18): 8520-7, 1986 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-3522571

RESUMO

The effect of lipopolysaccharide on RNA polymerase I activity in primary cultures of murine B lymphocytes has been examined. In cells treated with mitogen for 48 h, the activity of RNA polymerase I was approximately 15 times greater than in control cells. In situ localization of RNA polymerase I using indirect immunofluorescence indicated that there was at least a 10-fold increase in the amount of this enzyme associated with nucleoli of 48 h mitogen-treated cells relative to control cells. Immunoblotting experiments demonstrated a similar increase in the concentration of the 190-kDa subunit bound to DNA; the concentrations of the other polymerase I-associated polypeptides did not correlate with rRNA synthesis. Assuming 1 mol of the 190-kDa polypeptide/mol of polymerase I, it was estimated that 2,300 and 30,000 molecules of enzyme were associated with rDNA in the unstimulated and stimulated B cell, respectively. Thus, an increased cellular concentration of the 190-kDa subunit of RNA polymerase I and its association with ribosomal DNA may be a crucial step in rRNA synthesis.


Assuntos
Linfócitos B/enzimologia , Lipopolissacarídeos/farmacologia , RNA Polimerase I/biossíntese , Animais , Linfócitos B/efeitos dos fármacos , Células Cultivadas , DNA Ribossômico/metabolismo , Indução Enzimática , Técnicas de Imunoadsorção , Camundongos , Peso Molecular , Timidina/metabolismo , Fatores de Tempo , Uridina/metabolismo
19.
J Virol ; 66(5): 3062-8, 1992 May.
Artigo em Inglês | MEDLINE | ID: mdl-1313918

RESUMO

In HeLa cells, RNA polymerase I (Pol I)-mediated transcription is severely inhibited soon after infection with poliovirus. We have developed a gel retardation assay to analyze DNA-protein complexes formed at the Pol I promoter. We show here that two complexes (A and C) formed by nuclear extracts from uninfected cells disappear after infection of cells with poliovirus. In contrast, a new, rapidly migrating complex (D) is formed in virus-infected cell extract. This change in the mobility of gel-retarded complexes correlates well with the kinetics of inhibition of rRNA transcription in virus-infected cells. Incubation of nuclear extracts from mock-infected cells with bacterially expressed, purified poliovirus protease 3C results in the disappearance of complexes A and C with concomitant generation of complex D. A partially purified transcription factor fraction derived from uninfected cells that contains complex A is able to restore Pol I transcription when added to virus-infected cell extracts, suggesting that this complex plays an important role in Pol I transcription. These results suggest that poliovirus proteinase 3C may have an important role in the shutoff of Pol I transcription in cells infected with poliovirus.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Poliomielite/genética , Poliovirus/genética , Regiões Promotoras Genéticas/genética , RNA Ribossômico/genética , Proteínas Virais , Proteases Virais 3C , Sequência de Bases , Núcleo Celular/metabolismo , Cicloeximida/farmacologia , Cisteína Endopeptidases/metabolismo , Células HeLa , Interações Hospedeiro-Parasita , Humanos , Dados de Sequência Molecular , RNA Polimerase I/biossíntese , Frações Subcelulares/metabolismo
20.
Gan ; 69(6): 739-47, 1978 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-750269

RESUMO

Tubercidin (7-deazaadenosine) is a strong inhibitor of cell proliferation in mouse L5178y cells. Radioactive tubercidin is incorporated into DNA and RNA. Poly(A)-containing RNA shows the highest specific radioactivity. The amount of low molecular weight 4S and 5S RNA is diminished to some extent under the influence of the compound. Tubercidin triphosphate is a potent inhibitor of DNA-dependent DNA polymerases alpha and beta, and the DNA-dependent RNA polymerases I, II, and III, although the efficiency of its incorporation is lower than of dATP and ATP. Tubercidin triphosphate also seems to be a good substrate for the Mg2+-dependent poly(A) polymerase.


Assuntos
Leucemia Experimental/metabolismo , Ribonucleosídeos/metabolismo , Tubercidina/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular , DNA de Neoplasias/biossíntese , DNA Polimerase Dirigida por DNA/biossíntese , Camundongos , RNA Polimerase I/biossíntese , RNA Polimerase II/biossíntese , RNA Polimerase III/biossíntese , RNA Neoplásico/biossíntese , Tubercidina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA