Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 83: 519-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24606147

RESUMO

RecQ helicases are an important family of genome surveillance proteins conserved from bacteria to humans. Each of the five human RecQ helicases plays critical roles in genome maintenance and stability, and the RecQ protein family members are often referred to as guardians of the genome. The importance of these proteins in cellular homeostasis is underscored by the fact that defects in BLM, WRN, and RECQL4 are linked to distinct heritable human disease syndromes. Each human RecQ helicase has a unique set of protein-interacting partners, and these interactions dictate its specialized functions in genome maintenance, including DNA repair, recombination, replication, and transcription. Human RecQ helicases also interact with each other, and these interactions have significant impact on enzyme function. Future research goals in this field include a better understanding of the division of labor among the human RecQ helicases and learning how human RecQ helicases collaborate and cooperate to enhance genome stability.


Assuntos
Reparo do DNA , Replicação do DNA , RecQ Helicases/fisiologia , Recombinação Genética , DNA/química , Exodesoxirribonucleases/química , Genoma Humano , Instabilidade Genômica , Humanos , Modelos Moleculares , Conformação Molecular , Família Multigênica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , RecQ Helicases/química , Fase S , Helicase da Síndrome de Werner
2.
Mol Cell ; 77(3): 528-541.e8, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31759821

RESUMO

Formation of co-transcriptional R-loops underlies replication fork stalling upon head-on transcription-replication encounters. Here, we demonstrate that RAD51-dependent replication fork reversal induced by R-loops is followed by the restart of semiconservative DNA replication mediated by RECQ1 and RECQ5 helicases, MUS81/EME1 endonuclease, RAD52 strand-annealing factor, the DNA ligase IV (LIG4)/XRCC4 complex, and the non-catalytic subunit of DNA polymerase δ, POLD3. RECQ5 disrupts RAD51 filaments assembled on stalled forks after RECQ1-mediated reverse branch migration, preventing a new round of fork reversal and facilitating fork cleavage by MUS81/EME1. MUS81-dependent DNA breaks accumulate in cells lacking RAD52 or LIG4 upon induction of R-loop formation, suggesting that RAD52 acts in concert with LIG4/XRCC4 to catalyze fork religation, thereby mediating replication restart. The resumption of DNA synthesis after R-loop-associated fork stalling also requires active transcription, the restoration of which depends on MUS81, RAD52, LIG4, and the transcription elongation factor ELL. These findings provide mechanistic insights into transcription-replication conflict resolution.


Assuntos
Replicação do DNA/fisiologia , Estruturas R-Loop/genética , Rad51 Recombinase/metabolismo , Linhagem Celular Tumoral , DNA Ligases/metabolismo , DNA Polimerase III/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Células HeLa , Humanos , Estruturas R-Loop/fisiologia , Rad51 Recombinase/genética , Rad51 Recombinase/fisiologia , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , RecQ Helicases/metabolismo , RecQ Helicases/fisiologia , Transcrição Gênica/genética
3.
Mol Cell ; 57(4): 577-581, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25699706

RESUMO

Double-strand breaks (DSBs) threaten chromosome integrity. The most accurate repair of DSBs is by homologous recombination (HR), catalyzed by recombination proteins such as Rad51. Three papers in this issue of Molecular Cell (Fasching et al., 2015; Kaur et al., 2015; Tang et al., 2015) now reveal the role of three of these proteins in budding yeast: Sgs1 (BLM homolog), Top3 (TOPIIIα homolog), and Rmi1. They demonstrate several steps where all three proteins act together, and find additional functions of the Top3-Rmi1 subcomplex that are critical for the completion of meiosis.


Assuntos
Segregação de Cromossomos , DNA Topoisomerases Tipo I/fisiologia , Proteínas de Ligação a DNA/fisiologia , Recombinação Homóloga/fisiologia , Meiose/genética , Modelos Genéticos , Rad51 Recombinase/fisiologia , RecQ Helicases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Humanos
4.
Mol Cell ; 57(4): 595-606, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25699708

RESUMO

The displacement loop (D loop) is a DNA strand invasion product formed during homologous recombination. Disruption of nascent D loops prevents recombination, and during synthesis-dependent strand annealing (SDSA), disruption of D loops extended by DNA polymerase ensures a non-crossover outcome. The proteins implicated in D loop disruption are DNA motor proteins/helicases that act by moving DNA junctions. Here we report that D loops can also be disrupted by DNA topoisomerase 3 (Top3), and this disruption depends on Top3's catalytic activity. Yeast Top3 specifically disrupts D loops mediated by yeast Rad51/Rad54; protein-free D loops or D loop mediated by bacterial RecA protein or human RAD51/RAD54 resist dissolution. Also, the human Topoisomerase IIIa-RMI1-RMI2 complex is capable of dissolving D loops. Consistent with genetic data, we suggest that the extreme growth defect and hyper-recombination phenotype of Top3-deficient yeast cells is partially a result of unprocessed D loops.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Recombinação Homóloga/fisiologia , Modelos Genéticos , Rad51 Recombinase/fisiologia , RecQ Helicases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Helicases/fisiologia , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Rad51 Recombinase/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie
5.
Nucleic Acids Res ; 48(10): 5467-5484, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32329774

RESUMO

Transcription-replication (T-R) conflicts are profound threats to genome integrity. However, whilst much is known about the existence of T-R conflicts, our understanding of the genetic and temporal nature of how cells respond to them is poorly established. Here, we address this by characterizing the early cellular response to transient T-R conflicts (TRe). This response specifically requires the DNA recombination repair proteins BLM and BRCA2 as well as a non-canonical monoubiquitylation-independent function of FANCD2. A hallmark of the TRe response is the rapid co-localization of these three DNA repair factors at sites of T-R collisions. We find that the TRe response relies on basal activity of the ATR kinase, yet it does not lead to hyperactivation of this key checkpoint protein. Furthermore, specific abrogation of the TRe response leads to DNA damage in mitosis, and promotes chromosome instability and cell death. Collectively our findings identify a new role for these well-established tumor suppressor proteins at an early stage of the cellular response to conflicts between DNA transcription and replication.


Assuntos
Replicação do DNA , Reparo de DNA por Recombinação , Transcrição Gênica , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA2/fisiologia , Linhagem Celular , Sobrevivência Celular , Quinase 9 Dependente de Ciclina/metabolismo , DNA/metabolismo , Dano ao DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Humanos , Mitose/genética , Regiões Promotoras Genéticas , RNA/metabolismo , RNA Polimerase II/metabolismo , Splicing de RNA , RecQ Helicases/fisiologia , Ubiquitinação
6.
J Biol Chem ; 295(27): 8945-8957, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32371399

RESUMO

DNA interstrand crosslink (ICL) repair requires a complex network of DNA damage response pathways. Removal of the ICL lesions is vital, as they are physical barriers to essential DNA processes that require the separation of duplex DNA, such as replication and transcription. The Fanconi anemia (FA) pathway is the principal mechanism for ICL repair in metazoans and is coupled to DNA replication. In Saccharomyces cerevisiae, a vestigial FA pathway is present, but ICLs are predominantly repaired by a pathway involving the Pso2 nuclease, which is hypothesized to use its exonuclease activity to digest through the lesion to provide access for translesion polymerases. However, Pso2 lacks translesion nuclease activity in vitro, and mechanistic details of this pathway are lacking, especially relative to FA. We recently identified the Hrq1 helicase, a homolog of the disease-linked enzyme RecQ-like helicase 4 (RECQL4), as a component of Pso2-mediated ICL repair. Here, using genetic, biochemical, and biophysical approaches, including single-molecule FRET (smFRET)- and gel-based nuclease assays, we show that Hrq1 stimulates the Pso2 nuclease through a mechanism that requires Hrq1 catalytic activity. Importantly, Hrq1 also stimulated Pso2 translesion nuclease activity through a site-specific ICL in vitro We noted that stimulation of Pso2 nuclease activity is specific to eukaryotic RecQ4 subfamily helicases, and genetic and biochemical data suggest that Hrq1 likely interacts with Pso2 through their N-terminal domains. These results advance our understanding of FA-independent ICL repair and establish a role for the RecQ4 helicases in the repair of these detrimental DNA lesions.


Assuntos
Reparo do DNA/fisiologia , Endodesoxirribonucleases/metabolismo , RecQ Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/metabolismo , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , RecQ Helicases/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
7.
EMBO J ; 36(19): 2907-2919, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28877996

RESUMO

Alternative lengthening of telomeres (ALT) is a telomere lengthening pathway that predominates in aggressive tumors of mesenchymal origin; however, the underlying mechanism of telomere synthesis is not fully understood. Here, we show that the BLM-TOP3A-RMI (BTR) dissolvase complex is required for ALT-mediated telomere synthesis. We propose that recombination intermediates formed during strand invasion are processed by the BTR complex, initiating rapid and extensive POLD3-dependent telomere synthesis followed by dissolution, with no overall exchange of telomeric DNA. This process is counteracted by the SLX4-SLX1-ERCC4 complex, which promotes resolution of the recombination intermediate, resulting in telomere exchange in the absence of telomere extension. Our data are consistent with ALT being a conservative DNA replication process, analogous to break-induced replication, which is dependent on BTR and counteracted by SLX4 complex-mediated resolution events.


Assuntos
Replicação do DNA/genética , RecQ Helicases/fisiologia , Recombinases/fisiologia , Recombinação Genética/genética , Homeostase do Telômero/genética , Células Cultivadas , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Humanos , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/fisiologia , RecQ Helicases/metabolismo , Recombinases/metabolismo , Telômero/metabolismo
8.
Nucleic Acids Res ; 46(16): 8500-8515, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30053104

RESUMO

Most RecQ DNA helicases share a conserved domain arrangement that mediates their activities in genomic stability. This arrangement comprises a helicase motor domain, a RecQ C-terminal (RecQ-C) region including a winged-helix (WH) domain, and a 'Helicase and RNase D C-terminal' (HRDC) domain. Single-molecule real-time translocation and DNA unwinding by full-length Escherichia coli RecQ and variants lacking either the HRDC or both the WH and HRDC domains was analyzed. RecQ operated under two interconvertible kinetic modes, 'slow' and 'normal', as it unwound duplex DNA and translocated on single-stranded (ss) DNA. Consistent with a crystal structure of bacterial RecQ bound to ssDNA by base stacking, abasic sites blocked RecQ unwinding. Removal of the HRDC domain eliminates the slow mode while preserving the normal mode of activity. Unexpectedly, a RecQ variant lacking both the WH and HRDC domains retains weak helicase activity. The inclusion of E. coli ssDNA-binding protein (SSB) induces a third 'fast' unwinding mode four times faster than the normal RecQ mode and enhances the overall helicase activity (affinity, rate, and processivity). SSB stimulation was, furthermore, observed in the RecQ deletion variants, including the variant missing the WH domain. Our results support a model in which RecQ and SSB have multiple interacting modes.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/enzimologia , RecQ Helicases/fisiologia , Deleção de Genes , Sequências Repetidas Invertidas , Cinética , Modelos Moleculares , Pinças Ópticas , Conformação Proteica , Domínios Proteicos , RecQ Helicases/genética , Imagem Individual de Molécula
9.
Exp Eye Res ; 178: 99-107, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30227115

RESUMO

Age-related cataract (ARC) is the most common cause of severe visual impairment and blindness. The precise mechanisms of ARC are not completely understood, but it is well accepted that oxidative damage plays an important role in the disease pathogenesis. BLM, the key enzyme of the double-strand break repair (DSBR) pathway, is part of a family of DNA unwinding enzymes and has a crucial role in multiple steps of the DNA recombination, replication and repair processes. We have recently shown that BLM-rs1063147 is initially associated with nuclear ARC in a cross-section study. Therefore, we wanted to study the effects of BLM on ARC progression. In ARC patients, BLM transcription in lens capsules was decreased, so did the BLM protein, and after UVB irradiation, BLM mRNA and protein levels were increased in SRA01/04 cells. Upon silencing BLM in SRA01/04 cells and rat lens, cell vitality and apoptosis were altered, and the rat lens opacification was considerable. In conclusion, BLM can regulate cataract progression by influencing cell vitality and apoptosis.


Assuntos
Apoptose , Catarata/fisiopatologia , Células Epiteliais/fisiologia , Cápsula do Cristalino/fisiopatologia , RecQ Helicases/fisiologia , Animais , Western Blotting , Catarata/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , Progressão da Doença , Células Epiteliais/efeitos da radiação , Citometria de Fluxo , Inativação Gênica , Humanos , Marcação In Situ das Extremidades Cortadas , Cápsula do Cristalino/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Raios Ultravioleta
10.
Nucleic Acids Res ; 45(5): 2558-2570, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27956499

RESUMO

The DNA replication or S-phase checkpoint monitors the integrity of DNA synthesis. Replication stress or DNA damage triggers fork stalling and checkpoint signaling to activate repair pathways. Recovery from checkpoint activation is critical for cell survival following DNA damage. Recovery from the S-phase checkpoint includes inactivation of checkpoint signaling and restart of stalled replication forks. Previous studies demonstrated that degradation of Mrc1, the Saccharomyces cerevisiae ortholog of human Claspin, is facilitated by the SCFDia2 ubiquitin ligase and is important for cell cycle re-entry after DNA damage-induced S-phase checkpoint activation. Here, we show that degradation of Mrc1 facilitated by the SCFDia2 complex is critical to restart stalled replication forks during checkpoint recovery. Using DNA fiber analysis, we showed that Dia2 functions with the Sgs1 and Mph1 helicases (orthologs of human BLM and FANCM, respectively) in the recombination-mediated fork restart pathway. In addition, Dia2 physically interacts with Sgs1 upon checkpoint activation. Importantly, failure to target Mrc1 for degradation during recovery inhibits Sgs1 chromatin association, but this can be alleviated by induced proteolysis of Mrc1 after checkpoint activation. Together, these studies provide new mechanistic insights into how cells recover from activation of the S-phase checkpoint.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas F-Box/metabolismo , RecQ Helicases/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Pontos de Checagem do Ciclo Celular , Cromatina/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Proteínas F-Box/química , Proteínas F-Box/fisiologia , Domínios Proteicos , RecQ Helicases/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia
11.
Genes Dev ; 25(4): 350-62, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21325134

RESUMO

Repair of dsDNA breaks requires processing to produce 3'-terminated ssDNA. We biochemically reconstituted DNA end resection using purified human proteins: Bloom helicase (BLM); DNA2 helicase/nuclease; Exonuclease 1 (EXO1); the complex comprising MRE11, RAD50, and NBS1 (MRN); and Replication protein A (RPA). Resection occurs via two routes. In one, BLM and DNA2 physically and specifically interact to resect DNA in a process that is ATP-dependent and requires BLM helicase and DNA2 nuclease functions. RPA is essential for both DNA unwinding by BLM and enforcing 5' → 3' resection polarity by DNA2. MRN accelerates processing by recruiting BLM to the end. In the other, EXO1 resects the DNA and is stimulated by BLM, MRN, and RPA. BLM increases the affinity of EXO1 for ends, and MRN recruits and enhances the processivity of EXO1. Our results establish two of the core machineries that initiate recombinational DNA repair in human cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Hidrolases Anidrido Ácido , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Quebras de DNA de Cadeia Simples , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Helicases/fisiologia , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/fisiologia , Humanos , Técnicas In Vitro , Proteína Homóloga a MRE11 , Modelos Biológicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Ligação Proteica/fisiologia , RecQ Helicases/genética , RecQ Helicases/metabolismo , RecQ Helicases/fisiologia , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/fisiologia
12.
Ann Oncol ; 29(4): 903-909, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452344

RESUMO

Background: Platinum-based therapy is an effective treatment for a subset of triple-negative breast cancer and ovarian cancer patients. In order to increase response rate and decrease unnecessary use, robust biomarkers that predict response to therapy are needed. Patients and methods: We performed an integrated genomic approach combining differential analysis of gene expression and DNA copy number in sensitive compared with resistant triple-negative breast cancers in two independent neoadjuvant cisplatin-treated cohorts. Functional relevance of significant hits was investigated in vitro by overexpression, knockdown and targeted inhibitor treatment. Results: We identified two genes, the Bloom helicase (BLM) and Fanconi anemia complementation group I (FANCI), that have both increased DNA copy number and gene expression in the platinum-sensitive cases. Increased level of expression of these two genes was also associated with platinum but not with taxane response in ovarian cancer. As a functional validation, we found that overexpression of BLM promotes DNA damage and induces sensitivity to cisplatin but has no effect on paclitaxel sensitivity. Conclusions: A biomarker based on the expression levels of the BLM and FANCI genes is a potential predictor of platinum sensitivity in triple-negative breast cancer and ovarian cancer.


Assuntos
Antineoplásicos/uso terapêutico , Dano ao DNA , Neoplasias Ovarianas/metabolismo , Compostos de Platina/uso terapêutico , RecQ Helicases/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
13.
Nucleic Acids Res ; 43(2): 893-903, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25520194

RESUMO

Fanconi anemia (FA) patients exhibit bone marrow failure, developmental defects and cancer. The FA pathway maintains chromosomal stability in concert with replication fork maintenance and DNA double strand break (DSB) repair pathways including RAD51-mediated homologous recombination (HR). RAD51 is a recombinase that maintains replication forks and repairs DSBs, but also rearranges chromosomes. Two RecQ helicases, RECQL5 and Bloom syndrome mutated (BLM) suppress HR through nonredundant mechanisms. Here we test the impact deletion of RECQL5 and BLM has on mouse embryonic stem (ES) cells deleted for FANCB, a member of the FA core complex. We show that RECQL5, but not BLM, conferred resistance to mitomycin C (MMC, an interstrand crosslinker) and camptothecin (CPT, a type 1 topoisomerase inhibitor) in FANCB-defective cells. RECQL5 suppressed, while BLM caused, breaks and radials in FANCB-deleted cells exposed to CPT or MMC, respectively. RECQL5 protected the nascent replication strand from MRE11-mediated degradation and restarted stressed replication forks in a manner additive to FANCB. By contrast BLM restarted, but did not protect, replication forks in a manner epistatic to FANCB. RECQL5 also lowered RAD51 levels in FANCB-deleted cells at stressed replication sites implicating a rearrangement avoidance mechanism. Thus, RECQL5 and BLM impact FANCB-defective cells differently in response to replication stress with relevance to chemotherapeutic regimes.


Assuntos
Reparo do DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi/fisiologia , RecQ Helicases/fisiologia , Animais , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Deleção de Genes , Camundongos , RecQ Helicases/genética
14.
J Reprod Dev ; 62(1): 121-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26598326

RESUMO

Production of knockout mice using targeted embryonic stem cells (ESCs) is a powerful approach for investigating the function of specific genes in vivo. Although the protocol for gene targeting via homologous recombination (HR) in ESCs is already well established, the targeting efficiency varies at different target loci and is sometimes too low. It is known that knockdown of the Bloom syndrome gene, BLM, enhances HR-mediated gene targeting efficiencies in various cell lines. However, it has not yet been investigated whether this approach in ESCs is applicable for successful knockout mouse production. Therefore, we attempted to answer this question. Consistent with previous reports, Blm knockdown enhanced gene targeting efficiencies for three gene loci that we examined by 2.3-4.1-fold. Furthermore, the targeted ESC clones generated good chimeras and were successful in germline transmission. These data suggest that Blm knockdown provides a general benefit for efficient ESC-based and HR-mediated knockout mouse production.


Assuntos
Células-Tronco Embrionárias/citologia , Técnicas de Silenciamento de Genes , RecQ Helicases/genética , RecQ Helicases/fisiologia , Animais , DNA Helicases/genética , Marcação de Genes , Células Germinativas/metabolismo , Recombinação Homóloga , Cariotipagem , Camundongos , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno/metabolismo
15.
Nucleic Acids Res ; 42(9): 5671-88, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623817

RESUMO

A variety of human tumors employ alternative and recombination-mediated lengthening for telomere maintenance (ALT). Human RecQ helicases, such as BLM and WRN, can efficiently unwind alternate/secondary structures during telomere replication and/or recombination. Here, we report a novel role for RECQL1, the most abundant human RecQ helicase but functionally least studied, in telomere maintenance. RECQL1 associates with telomeres in ALT cells and actively resolves telomeric D-loops and Holliday junction substrates. RECQL1 physically and functionally interacts with telomere repeat-binding factor 2 that in turn regulates its helicase activity on telomeric substrates. The telomeric single-stranded binding protein, protection of telomeres 1 efficiently stimulates RECQL1 on telomeric substrates containing thymine glycol, a replicative blocking lesion. Loss of RECQL1 results in dysfunctional telomeres, telomere loss and telomere shortening, elevation of telomere sister-chromatid exchanges and increased aphidicolin-induced telomere fragility, indicating a role for RECQL1 in telomere maintenance. Further, our results indicate that RECQL1 may participate in the same pathway as WRN, probably in telomere replication.


Assuntos
RecQ Helicases/fisiologia , Homeostase do Telômero , Animais , Replicação do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Exodesoxirribonucleases/metabolismo , Células HeLa , Humanos , Ligação Proteica , Transporte Proteico , RecQ Helicases/metabolismo , Telomerase/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Helicase da Síndrome de Werner
16.
Nucleic Acids Res ; 42(20): 12628-39, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25352544

RESUMO

Werner syndrome (WS) is a human chromosomal instability disorder associated with cancer predisposition and caused by mutations in the WRN gene. WRN helicase activity is crucial in limiting breakage at common fragile sites (CFS), which are the preferential targets of genome instability in precancerous lesions. However, the precise function of WRN in response to mild replication stress, like that commonly used to induce breaks at CFS, is still missing. Here, we establish that WRN plays a role in mediating CHK1 activation under moderate replication stress. We provide evidence that phosphorylation of CHK1 relies on the ATR-mediated phosphorylation of WRN, but not on WRN helicase activity. Analysis of replication fork dynamics shows that loss of WRN checkpoint mediator function as well as of WRN helicase activity hamper replication fork progression, and lead to new origin activation to allow recovery from replication slowing upon replication stress. Furthermore, bypass of WRN checkpoint mediator function through overexpression of a phospho-mimic form of CHK1 restores fork progression and chromosome stability to the wild-type levels. Together, these findings are the first demonstration that WRN regulates the ATR-checkpoint activation upon mild replication stress, preventing chromosome fragility.


Assuntos
Replicação do DNA , Exodesoxirribonucleases/fisiologia , RecQ Helicases/fisiologia , Afidicolina/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Genoma , Células HEK293 , Humanos , Mutação , Proteínas Quinases/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Transdução de Sinais , Estresse Fisiológico/genética , Helicase da Síndrome de Werner
17.
Biochim Biophys Acta ; 1843(5): 1002-12, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24418621

RESUMO

RecQ family DNA helicases function in the maintenance of genome stability. Mice deficient in RecQL5, one of five RecQ helicases, show a cancer predisposition phenotype, suggesting that RecQL5 plays a tumor suppressor role. RecQL5 interacts with Rad51, a key factor in homologous recombination (HR), and displaces Rad51 from Rad51-single stranded DNA (ssDNA) filaments in vitro. However, the precise roles of RecQL5 in the cell remain elusive. Here, we present evidence suggesting that RecQL5 is involved in DNA interstrand crosslink (ICL) repair. Chicken DT40 RECQL5 gene knockout (KO) cells showed sensitivity to ICL-inducing agents such as cisplatin (CDDP) and mitomycin C (MMC) and a higher number of chromosome aberrations in the presence of MMC than wild-type cells. The phenotypes of RECQL5 KO cells resembled those of Fanconi anemia gene KO cells. Genetic analysis using corresponding gene knockout cells showed that RecQL5 is involved in the FANCD1 (BRCA2)-dependent ICL repair pathway in which Rad51-ssDNA filament formation is promoted by BRCA2. The disappearance but not appearance of Rad51-foci was delayed in RECQL5 KO cells after MMC treatment. Deletion of Rad54, which processes the Rad51-ssDNA filament in HR, in RECQL5 KO cells increased sensitivity to CDDP and further delayed the disappearance of Rad51-foci, suggesting that RecQL5 and Rad54 have different effects on the Rad51-ssDNA filament. Furthermore, the frequency and variation of CDDP-induced gene conversion at the immunoglobulin locus were increased in RECQL5 KO cells. These results suggest that RecQL5 plays a role in regulating the incidence and quality of ICL-induced recombination.


Assuntos
DNA/química , Genes Supressores de Tumor , RecQ Helicases/fisiologia , Recombinação Genética/fisiologia , Animais , Linhagem Celular , Galinhas , Técnicas de Silenciamento de Genes
18.
EMBO J ; 30(16): 3309-21, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21743438

RESUMO

Centromeres nucleate the formation of kinetochores and are vital for chromosome segregation during mitosis. The SNF2 family helicase PICH (Plk1-interacting checkpoint helicase) and the BLM (the Bloom's syndrome protein) helicase decorate ultrafine histone-negative DNA threads that link the segregating sister centromeres during anaphase. The functions of PICH and BLM at these threads are not understood, however. Here, we show that PICH binds to BLM and enables BLM localization to anaphase centromeric threads. PICH- or BLM-RNAi cells fail to resolve these threads in anaphase. The fragmented threads form centromeric-chromatin-containing micronuclei in daughter cells. Anaphase threads in PICH- and BLM-RNAi cells contain histones and centromere markers. Recombinant purified PICH has nucleosome remodelling activities in vitro. We propose that PICH and BLM unravel centromeric chromatin and keep anaphase DNA threads mostly free of nucleosomes, thus allowing these threads to span long distances between rapidly segregating centromeres without breakage and providing a spatiotemporal window for their resolution.


Assuntos
Centrômero/metabolismo , DNA Helicases/fisiologia , DNA/metabolismo , Nucleossomos/metabolismo , RecQ Helicases/fisiologia , Anáfase , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Células HeLa , Histonas/metabolismo , Humanos , Micronúcleos com Defeito Cromossômico , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/fisiologia
19.
Nucleic Acids Res ; 41(2): 881-99, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180761

RESUMO

Humans have five RecQ helicases, whereas simpler organisms have only one. Little is known about whether and how these RecQ helicases co-operate and/or complement each other in response to cellular stress. Here we show that RECQL5 associates longer at laser-induced DNA double-strand breaks in the absence of Werner syndrome (WRN) protein, and that it interacts physically and functionally with WRN both in vivo and in vitro. RECQL5 co-operates with WRN on synthetic stalled replication fork-like structures and stimulates its helicase activity on DNA fork duplexes. Both RECQL5 and WRN re-localize from the nucleolus into the nucleus after replicative stress and significantly associate with each other during S-phase. Further, we show that RECQL5 is essential for cell survival in the absence of WRN. Loss of both RECQL5 and WRN severely compromises DNA replication, accumulates genomic instability and ultimately leads to cell death. Collectively, our results indicate that RECQL5 plays both co-operative and complementary roles with WRN. This is an early demonstration of a significant functional interplay and a novel synthetic lethal interaction among the human RecQ helicases.


Assuntos
Quebras de DNA de Cadeia Dupla , Exodesoxirribonucleases/metabolismo , RecQ Helicases/metabolismo , Linhagem Celular , Sobrevivência Celular , Replicação do DNA , Exodesoxirribonucleases/fisiologia , Instabilidade Genômica , RecQ Helicases/antagonistas & inibidores , RecQ Helicases/fisiologia , Síndrome de Werner/genética , Helicase da Síndrome de Werner
20.
Nucleic Acids Res ; 41(20): 9296-309, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23935123

RESUMO

Mus81 resolvase and Sgs1 helicase have well-established roles in mitotic DNA repair. Moreover, Mus81 is part of a minor crossover (CO) pathway in the meiosis of budding yeast, plants and vertebrates. The major pathway depends on meiosis-specific synaptonemal complex (SC) formation, ZMM proteins and the MutLγ complex for CO-directed resolution of joint molecule (JM)-recombination intermediates. Sgs1 has also been implicated in this pathway, although it may mainly promote the non-CO outcome of meiotic repair. We show in Tetrahymena, that homologous chromosomes fail to separate and JMs accumulate in the absence of Mus81 or Sgs1, whereas deletion of the MutLγ-component Mlh1 does not affect meiotic divisions. Thus, our results are consistent with Mus81 being part of an essential, if not the predominant, CO pathway in Tetrahymena. Sgs1 may exert functions similar to those in other eukaryotes. However, we propose an additional role in supporting homologous CO formation by promoting homologous over intersister interactions. Tetrahymena shares the predominance of the Mus81 CO pathway with the fission yeast. We propose that in these two organisms, which independently lost the SC during evolution, the basal set of mitotic repair proteins is sufficient for executing meiotic recombination.


Assuntos
Endodesoxirribonucleases/fisiologia , Meiose/genética , RecQ Helicases/fisiologia , Recombinases/fisiologia , Recombinação Genética , Núcleo Celular/enzimologia , Cromátides , Segregação de Cromossomos , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Mutação , Interferência de RNA , RecQ Helicases/análise , RecQ Helicases/antagonistas & inibidores , Recombinases/análise , Recombinases/antagonistas & inibidores , Complexo Sinaptonêmico , Tetrahymena thermophila/enzimologia , Tetrahymena thermophila/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA