Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 829
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(3): 655-671.e22, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603654

RESUMO

Checkpoint blockade with antibodies specific for the PD-1 and CTLA-4 inhibitory receptors can induce durable responses in a wide range of human cancers. However, the immunological mechanisms responsible for severe inflammatory side effects remain poorly understood. Here we report a comprehensive single-cell analysis of immune cell populations in colitis, a common and severe side effect of checkpoint blockade. We observed a striking accumulation of CD8 T cells with highly cytotoxic and proliferative states and no evidence of regulatory T cell depletion. T cell receptor (TCR) sequence analysis demonstrated that a substantial fraction of colitis-associated CD8 T cells originated from tissue-resident populations, explaining the frequently early onset of colitis symptoms following treatment initiation. Our analysis also identified cytokines, chemokines, and surface receptors that could serve as therapeutic targets for colitis and potentially other inflammatory side effects of checkpoint blockade.


Assuntos
Linfócitos T CD8-Positivos/citologia , Antígeno CTLA-4/imunologia , Colite/metabolismo , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia/efeitos adversos , Células Mieloides/metabolismo , Receptores de Quimiocinas/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Antígeno CTLA-4/metabolismo , Quimiocinas/metabolismo , Colite/tratamento farmacológico , Colite/genética , Colite/imunologia , Citocinas/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Família Multigênica , Células Mieloides/citologia , RNA-Seq , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Receptores CXCR6/genética , Receptores CXCR6/metabolismo , Receptores de Quimiocinas/genética , Análise de Célula Única , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo
2.
Nat Immunol ; 22(4): 434-448, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649580

RESUMO

T cells dynamically interact with multiple, distinct cellular subsets to determine effector and memory differentiation. Here, we developed a platform to quantify cell location in three dimensions to determine the spatial requirements that direct T cell fate. After viral infection, we demonstrated that CD8+ effector T cell differentiation is associated with positioning at the lymph node periphery. This was instructed by CXCR3 signaling since, in its absence, T cells are confined to the lymph node center and alternatively differentiate into stem-like memory cell precursors. By mapping the cellular sources of CXCR3 ligands, we demonstrated that CXCL9 and CXCL10 are expressed by spatially distinct dendritic and stromal cell subsets. Unlike effector cells, retention of stem-like memory precursors in the paracortex is associated with CCR7 expression. Finally, we demonstrated that T cell location can be tuned, through deficiency in CXCL10 or type I interferon signaling, to promote effector or stem-like memory fates.


Assuntos
Infecções por Arenaviridae/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/metabolismo , Memória Imunológica , Linfonodos/metabolismo , Células Precursoras de Linfócitos T/metabolismo , Receptores CXCR3/metabolismo , Animais , Infecções por Arenaviridae/genética , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Linhagem da Célula , Células Cultivadas , Quimiocina CXCL10/genética , Quimiocina CXCL9/genética , Quimiotaxia de Leucócito , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Ligantes , Linfonodos/imunologia , Linfonodos/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Células Precursoras de Linfócitos T/imunologia , Células Precursoras de Linfócitos T/virologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Receptores CCR7/metabolismo , Receptores CXCR3/genética , Transdução de Sinais , Nicho de Células-Tronco , Células Estromais/imunologia , Células Estromais/metabolismo
3.
Nat Immunol ; 21(7): 766-776, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424367

RESUMO

Tissue-resident memory T (TRM) cells, functionally distinct from circulating memory T cells, have a critical role in protective immunity in tissues, are more efficacious when elicited after vaccination and yield more effective antitumor immunity, yet the signals that direct development of TRM cells are incompletely understood. Here we show that type 1 regulatory T (Treg) cells, which express the transcription factor T-bet, promote the generation of CD8+ TRM cells. The absence of T-bet-expressing type 1 Treg cells reduces the presence of TRM cells in multiple tissues and increases pathogen burden upon infectious challenge. Using infection models, we show that type 1 Treg cells are specifically recruited to local inflammatory sites via the chemokine receptor CXCR3. Close proximity with effector CD8+ T cells and Treg cell expression of integrin-ß8 endows the bioavailability of transforming growth factor-ß in the microenvironment, thereby promoting the generation of CD8+ TRM cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Memória Imunológica , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/transplante , Coccidiose/imunologia , Coccidiose/parasitologia , Modelos Animais de Doenças , Eimeria/imunologia , Feminino , Humanos , Cadeias beta de Integrinas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Receptores CXCR3/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante , Fator de Crescimento Transformador beta/metabolismo
4.
Immunity ; 56(10): 2358-2372.e5, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37699392

RESUMO

Lung-resident memory B cells (lung-BRMs) differentiate into plasma cells after reinfection, providing enhanced pulmonary protection. Here, we investigated the determinants of lung-BRM differentiation upon influenza infection. Kinetic analyses revealed that influenza nucleoprotein (NP)-specific BRMs preferentially differentiated early after infection and required T follicular helper (Tfh) cell help. BRM differentiation temporally coincided with transient interferon (IFN)-γ production by Tfh cells. Depletion of IFN-γ in Tfh cells prevented lung-BRM differentiation and impaired protection against heterosubtypic infection. IFN-γ was required for expression of the transcription factor T-bet by germinal center (GC) B cells, which promoted differentiation of a CXCR3+ GC B cell subset that were precursors of lung-BRMs and CXCR3+ memory B cells in the mediastinal lymph node. Absence of IFN-γ signaling or T-bet in GC B cells prevented CXCR3+ pre-memory precursor development and hampered CXCR3+ memory B cell differentiation and subsequent lung-BRM responses. Thus, Tfh-cell-derived IFN-γ is critical for lung-BRM development and pulmonary immunity, with implications for vaccination strategies targeting BRMs.


Assuntos
Influenza Humana , Linfócitos T Auxiliares-Indutores , Humanos , Interferon gama/metabolismo , Células B de Memória , Células T Auxiliares Foliculares/metabolismo , Centro Germinativo , Diferenciação Celular , Receptores CXCR3/metabolismo
5.
Immunity ; 56(7): 1613-1630.e5, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392735

RESUMO

Infiltration of regulatory T (Treg) cells, an immunosuppressive population of CD4+ T cells, into solid cancers represents a barrier to cancer immunotherapy. Chemokine receptors are critical for Treg cell recruitment and cell-cell interactions in inflamed tissues, including cancer, and thus are an ideal therapeutic target. Here, we show in multiple cancer models that CXCR3+ Treg cells were increased in tumors compared with lymphoid tissues, exhibited an activated phenotype, and interacted preferentially with CXCL9-producing BATF3+ dendritic cells (DCs). Genetic ablation of CXCR3 in Treg cells disrupted DC1-Treg cell interactions and concomitantly increased DC-CD8+ T cell interactions. Mechanistically, CXCR3 ablation in Treg cells increased tumor antigen-specific cross-presentation by DC1s, increasing CD8+ T cell priming and reactivation in tumors. This ultimately impaired tumor progression, especially in combination with anti-PD-1 checkpoint blockade immunotherapy. Overall, CXCR3 is shown to be a critical chemokine receptor for Treg cell accumulation and immune suppression in tumors.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Imunoterapia , Células Dendríticas/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
6.
Immunity ; 55(1): 82-97.e8, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34847356

RESUMO

CD8+ T cells responding to chronic infection adapt an altered differentiation program that provides some restraint on pathogen replication yet limits immunopathology. This adaptation is imprinted in stem-like cells and propagated to their progeny. Understanding the molecular control of CD8+ T cell differentiation in chronic infection has important therapeutic implications. Here, we find that the chemokine receptor CXCR3 is highly expressed on viral-specific stem-like CD8+ T cells and that one of its ligands, CXCL10, regulates the persistence and heterogeneity of responding CD8+ T cells in spleens of mice chronically infected with lymphocytic choriomeningitis virus. CXCL10 is produced by inflammatory monocytes and fibroblasts of the splenic red pulp, where it grants stem-like cells access to signals promoting differentiation and limits their exposure to pro-survival niches in the white pulp. Consequently, functional CD8+ T cell responses are greater in Cxcl10-/- mice and are associated with a lower viral set point.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL10/metabolismo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Monócitos/metabolismo , Receptores CXCR3/metabolismo , Baço/patologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Quimiocina CXCL10/genética , Doença Crônica , Seleção Clonal Mediada por Antígeno , Feminino , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR3/genética
7.
Immunity ; 54(12): 2842-2858.e5, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34813775

RESUMO

People living with HIV (PLWH) are at increased risk for developing skin and mucosal malignancies despite systemic reconstitution of CD4+ T cells upon antiretroviral therapy (ART). The underlying mechanism of chronic tissue-related immunodeficiency in HIV is unclear. We found that skin CD4+ tissue-resident memory T (Trm) cells were depleted after HIV infection and replenished only upon early ART initiation. TCR clonal analysis following early ART suggested a systemic origin for reconstituting CD4+ Trm cells. Single-cell RNA sequencing in PLWH that received late ART treatment revealed a loss of CXCR3+ Trm cells and a tolerogenic skin immune environment. Human papilloma virus-induced precancerous lesion biopsies showed reduced CXCR3+ Trm cell frequencies in the mucosa in PLWH versus HIV- individuals. These results reveal an irreversible loss of CXCR3+ Trm cells confined to skin and mucosa in PLWH who received late ART treatment, which may be a precipitating factor in the development of HPV-related cancer.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Síndromes de Imunodeficiência/imunologia , Células T de Memória/imunologia , Mucosa/imunologia , Pele/imunologia , Adulto , Terapia Antirretroviral de Alta Atividade , Feminino , Infecções por HIV/tratamento farmacológico , Sobreviventes de Longo Prazo ao HIV , Humanos , Síndromes de Imunodeficiência/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Receptores CXCR3/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Tempo para o Tratamento , Adulto Jovem
8.
Mol Cell ; 81(10): 2148-2165.e9, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743195

RESUMO

Developing strategies to activate tumor-cell-intrinsic immune response is critical for improving tumor immunotherapy by exploiting tumor vulnerability. KDM4A, as a histone H3 lysine 9 trimethylation (H3K9me3) demethylase, has been found to play a critical role in squamous cell carcinoma (SCC) growth and metastasis. Here we report that KDM4A inhibition promoted heterochromatin compaction and induced DNA replication stress, which elicited antitumor immunity in SCC. Mechanistically, KDM4A inhibition promoted the formation of liquid-like HP1γ puncta on heterochromatin and stall DNA replication, which activated tumor-cell-intrinsic cGAS-STING signaling through replication-stress-induced cytosolic DNA accumulation. Moreover, KDM4A inhibition collaborated with PD1 blockade to inhibit SCC growth and metastasis by recruiting and activating CD8+ T cells. In vivo lineage tracing demonstrated that KDM4A inhibition plus PD1 blockade efficiently eliminated cancer stem cells. Altogether, our results demonstrate that targeting KDM4A can activate anti-tumor immunity and enable PD1 blockade immunotherapy by aggravating replication stress in SCC cells.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Replicação do DNA/genética , Epigênese Genética , Histona Desmetilases/metabolismo , Imunidade/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Estresse Fisiológico/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA/genética , Células Epiteliais/metabolismo , Deleção de Genes , Humanos , Metástase Linfática , Camundongos Transgênicos , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR3/metabolismo , Células Th1/imunologia
9.
Nat Immunol ; 17(2): 150-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26595890

RESUMO

Mucosal surfaces are exposed to environmental substances and represent a major portal of entry for microorganisms. The innate immune system is responsible for early defense against infections and it is believed that the interferons (IFNs) constitute the first line of defense against viruses. Here we identify an innate antiviral pathway that works at epithelial surfaces before the IFNs. The pathway is activated independently of known innate sensors of viral infections through a mechanism dependent on viral O-linked glycans, which induce CXCR3 chemokines and stimulate antiviral activity in a manner dependent on neutrophils. This study therefore identifies a previously unknown layer of antiviral defense that exerts its action on epithelial surfaces before the classical IFN response is operative.


Assuntos
Imunidade Inata , Interferons/metabolismo , Mucosa/imunologia , Mucosa/metabolismo , Viroses/imunologia , Viroses/metabolismo , Animais , Linhagem Celular , Quimiocina CXCL10/biossíntese , Modelos Animais de Doenças , Feminino , Expressão Gênica , Glicosilação , Herpes Simples/genética , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 2/imunologia , Humanos , Interferons/genética , Ligantes , Camundongos , Camundongos Knockout , Mucosa/virologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Polissacarídeos/imunologia , Receptores CXCR3/deficiência , Receptores CXCR3/metabolismo , Vagina/imunologia , Vagina/metabolismo , Vagina/virologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Carga Viral , Viroses/virologia
10.
Immunity ; 50(6): 1498-1512.e5, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31097342

RESUMO

Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR3/metabolismo , Animais , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Humanos , Ativação Linfocitária , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nat Immunol ; 16(8): 850-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26075911

RESUMO

The success of antitumor immune responses depends on the infiltration of solid tumors by effector T cells, a process guided by chemokines. Here we show that in vivo post-translational processing of chemokines by dipeptidylpeptidase 4 (DPP4, also known as CD26) limits lymphocyte migration to sites of inflammation and tumors. Inhibition of DPP4 enzymatic activity enhanced tumor rejection by preserving biologically active CXCL10 and increasing trafficking into the tumor by lymphocytes expressing the counter-receptor CXCR3. Furthermore, DPP4 inhibition improved adjuvant-based immunotherapy, adoptive T cell transfer and checkpoint blockade. These findings provide direct in vivo evidence for control of lymphocyte trafficking via CXCL10 cleavage and support the use of DPP4 inhibitors for stabilizing biologically active forms of chemokines as a strategy to enhance tumor immunotherapy.


Assuntos
Dipeptidil Peptidase 4/imunologia , Imunoterapia/métodos , Linfócitos/imunologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Transferência Adotiva , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Quimiocinas/imunologia , Quimiocinas/metabolismo , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Feminino , Citometria de Fluxo , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Experimentais/genética , Pirazinas/farmacologia , Receptores CXCR3/imunologia , Receptores CXCR3/metabolismo , Fosfato de Sitagliptina , Triazóis/farmacologia
12.
Immunity ; 49(6): 1090-1102.e7, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30552021

RESUMO

Salmonella enterica (Se) bacteria cause persistent intracellular infections while stimulating a robust interferon-γ-producing CD4+ T (Th1) cell response. We addressed this paradox of concomitant infection and immunity by tracking fluorescent Se organisms in mice. Se bacteria persisted in nitric oxide synthase (iNOS)-producing resident and recruited macrophages while inducing genes related to protection from nitric oxide. Se-infected cells occupied iNOS+ splenic granulomas that excluded T cells but were surrounded by mononuclear phagocytes producing the chemokines CXCL9 and CXCL10, and Se epitope-specific Th1 cells expressing CXCR3, the receptor for these chemokines. Blockade of CXCR3 inhibited Th1 occupancy of CXCL9/10-dense regions, reduced activation of the Th1 cells, and led to increased Se growth. Thus, intracellular Se bacteria survive in their hosts by counteracting toxic products of the innate immune response and by residing in T cell-sparse granulomas, away from abundant Th1 cells positioned via CXCR3 in a bordering region that act to limit infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Granuloma/imunologia , Receptores CXCR3/imunologia , Infecções por Salmonella/imunologia , Salmonella enterica/imunologia , Células Th1/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/imunologia , Quimiocina CXCL9/metabolismo , Granuloma/metabolismo , Granuloma/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Ligantes , Ativação de Macrófagos/imunologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR3/metabolismo , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella enterica/fisiologia , Células Th1/metabolismo , Células Th1/microbiologia
13.
J Immunol ; 211(10): 1550-1560, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37772812

RESUMO

Extrahepatic viral infections are often accompanied by acute hepatitis, as evidenced by elevated serum liver enzymes and intrasinusoidal infiltration of CD8+ T cells, without direct infection of the liver. An example is infectious mononucleosis caused by primary infection with EBV. Previously, we demonstrated that airway infection of mice with murine γ-herpesvirus 68 (MHV68), a murine model of EBV, caused liver inflammation with elevated serum liver enzymes and intrahepatic infiltration of IFN-γ-producing CD8+ T cells and NK cells. Mechanistically, the expression of the CXCR3-ligand chemokines, which are commonly induced by IFN-γ and attract IFN-γ-producing Th1-type cells via CXCR3, was upregulated in the liver. Importantly, the liver inflammation was suppressed by oral neomycin, an intestine-impermeable aminoglycoside, suggesting an involvement of some products from the intestinal microbiota. In this study, we showed that the liver inflammation and the expression of the CXCR3-ligand chemokines in the liver were effectively ameliorated by i.p. administration of anti-TLR4 mAb or C34, a TLR4 blocker, as well as in TLR4-deficient mice. Conversely, intrarectal inoculation of Escherichia coli as an extraintestinal source of LPS aggravated liver inflammation in MHV68-infected mice with increased expression of the CXCR3-ligand chemokines in the liver. In contrast, the lung inflammation in MHV68-infected mice was not affected by oral neomycin, i.p. administration of C34, or TLR4 deficiency. Collectively, the LPS-TLR4 pathway plays a pivotal role in the liver inflammation of MHV68-infected mice at least in part by upregulating the CXCR3-ligand chemokines in the liver.


Assuntos
Hepatite , Hepatopatias , Animais , Camundongos , Quimiocinas/metabolismo , Inflamação , Ligantes , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neomicina , Receptores CXCR3/metabolismo , Receptor 4 Toll-Like
14.
Immunology ; 172(3): 500-515, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38584001

RESUMO

Lifestyle factors like poor maternal diet or antibiotic exposure disrupt early life microbiome assembly in infants, increasing the risk of severe lower respiratory infections (sLRI). Our prior studies in mice indicated that a maternal low-fibre diet (LFD) exacerbates LRI severity in infants by impairing recruitment of plasmacytoid dendritic cells (pDC) and consequently attenuating expansion of lung regulatory T (Treg) cells during pneumonia virus of mice (PVM) infection. Here, we investigated whether maternal dietary fibre intake influences Treg cell phenotypes in the mediastinal lymph nodes (mLN) and lungs of PVM-infected neonatal mice. Using high dimensional flow cytometry, we identified distinct clusters of regulatory T cells (Treg cells), which differed between lungs and mLN during infection, with notably greater effector Treg cell accumulation in the lungs. Compared to high-fibre diet (HFD)-reared pups, frequencies of various effector Treg cell subsets were decreased in the lungs of LFD-reared pups. Particularly, recruitment of chemokine receptor 3 (CXCR3+) expressing Treg cells was attenuated in LFD-reared pups, correlating with lower lung expression of CXCL9 and CXCL10 chemokines. The recruitment of this subset in response to PVM infection was similarly impaired in pDC depleted mice or following anti-CXCR3 treatment, increasing immunopathology in the lungs. In summary, PVM infection leads to the sequential recruitment and expansion of distinct Treg cell subsets to the lungs and mLN. The attenuated recruitment of the CXCR3+ subset in LFD-reared pups increases LRI severity, suggesting that strategies to enhance pDCs or CXCL9/CXCL10 expression will lower immune-mediated pathogenesis.


Assuntos
Tolerância Imunológica , Pulmão , Receptores CXCR3 , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Receptores CXCR3/metabolismo , Camundongos , Pulmão/imunologia , Pulmão/virologia , Feminino , Infecções por Pneumovirus/imunologia , Camundongos Endogâmicos C57BL , Linfonodos/imunologia , Quimiocina CXCL10/metabolismo , Modelos Animais de Doenças , Animais Recém-Nascidos
15.
Clin Immunol ; 264: 110267, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825071

RESUMO

Long-COVID (LC) is characterised by persistent symptoms for at least 3 months after acute infection. A dysregulation of the immune system and a persistent hyperinflammatory state may cause LC. LC patients present differences in activation and exhaustion states of innate and adaptive compartments. Different T CD4+ cell subsets can be identified by differential expression of chemokine receptors (CCR). However, changes in T cells with expression of CCRs such as CCR6 and CXCR3 and their relationship with CD8+ T cells remains unexplored in LC. Here, we performed unsupervised analysis and found CCR6+ CD4+ subpopulations enriched in COVID-19 convalescent individuals upon activation with SARS-CoV-2 peptides. SARS-CoV-2 specific CCR6+ CD4+ are decreased in LC patients, whereas CXCR3+ CCR6- and CCR4+ CCR6- CD4+ T cells are increased. LC patients showed lower IFN-γ-secreting CD8+ T cells after stimulation with SARS-CoV-2 Spike protein. This work underscores the role of CCR6 in the pathophysiology of LC.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , COVID-19 , Interferon gama , Receptores CCR6 , Receptores CXCR3 , SARS-CoV-2 , Humanos , Receptores CCR6/imunologia , Receptores CCR6/metabolismo , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Linfócitos T CD4-Positivos/imunologia , Receptores CXCR3/imunologia , Receptores CXCR3/metabolismo , SARS-CoV-2/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto
16.
Clin Exp Immunol ; 216(3): 293-306, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38430552

RESUMO

Sepsis is characterized by a dysfunctional host response to infection culminating in life-threatening organ failure that requires complex patient management and rapid intervention. Timely diagnosis of the underlying cause of sepsis is crucial, and identifying those at risk of complications and death is imperative for triaging treatment and resource allocation. Here, we explored the potential of explainable machine learning models to predict mortality and causative pathogen in sepsis patients. By using a modelling pipeline employing multiple feature selection algorithms, we demonstrate the feasibility of identifying integrative patterns from clinical parameters, plasma biomarkers, and extensive phenotyping of blood immune cells. While no single variable had sufficient predictive power, models that combined five and more features showed a macro area under the curve (AUC) of 0.85 to predict 90-day mortality after sepsis diagnosis, and a macro AUC of 0.86 to discriminate between Gram-positive and Gram-negative bacterial infections. Parameters associated with the cellular immune response contributed the most to models predictive of 90-day mortality, most notably, the proportion of T cells among PBMCs, together with expression of CXCR3 by CD4+ T cells and CD25 by mucosal-associated invariant T (MAIT) cells. Frequencies of Vδ2+ γδ T cells had the most profound impact on the prediction of Gram-negative infections, alongside other T-cell-related variables and total neutrophil count. Overall, our findings highlight the added value of measuring the proportion and activation patterns of conventional and unconventional T cells in the blood of sepsis patients in combination with other immunological, biochemical, and clinical parameters.


Assuntos
Sepse , Humanos , Sepse/imunologia , Sepse/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Biomarcadores/sangue , Receptores CXCR3/metabolismo , Aprendizado de Máquina , Subunidade alfa de Receptor de Interleucina-2/sangue , Subunidade alfa de Receptor de Interleucina-2/imunologia , Imunidade Celular , Linfócitos T CD4-Positivos/imunologia , Linfócitos T/imunologia , Prognóstico , Infecções por Bactérias Gram-Negativas/imunologia
17.
Cytokine ; 179: 156618, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663252

RESUMO

BACKGROUND: Pleural biomarkers represent potential diagnostic tools for tuberculous pleural effusion (TPE) due to their advantages of low cost, short turnaround time, and less invasiveness. This study evaluated the diagnostic accuracy of two CXCR3 ligands, C-X-C motif chemokine ligand 9 (CXCL9) and CXCL11, for TPE. In addition, we investigated the cellular origins and biological roles of CXCL9 and CXCL11 in the development of TPE. METHODS: This double-blind study prospectively enrolled patients with undiagnosed pleural effusion from two centers (Hohhot and Changshu) in China. Pleural fluid on admission was obtained and levels of CXCL9 and CXCL11 were measured by an enzyme-linked immunosorbent assay (ELISA). The receiver operating characteristic (ROC) curve and the decision curve analysis (DCA) were used to evaluate their diagnostic accuracy and net benefit, respectively. THP-1 cell-derived macrophages were treated with Bacillus Calmette-Guérin (BCG), and quantitative real-time PCR (qRT-PCR) and ELISA were used to determine the mRNA and protein levels of CXCL9 and CXCL11. The chemoattractant activities of CXCL9 and CXCL11 for T helper (Th) cells were analyzed by a transwell assay. RESULTS: One hundred and fifty-three (20 TPEs and 133 non-TPEs) patients were enrolled in the Hohhot Center, and 58 (13 TPEs and 45 non-TPEs) were enrolled in the Changshu Center. In both centers, we observed increased CXCL9 and CXCL11 in TPE patients. The areas under the ROC curves (AUCs) of pleural CXCL9 and CXCL11 in the Hohhot Center were 0.70 (95 % CI: 0.55-0.85) and 0.68 (95 % CI: 0.52-0.84), respectively. In the Changshu Center, the AUCs of CXCL9 and CXCL11 were 0.96 (95 % CI: 0.92-1.00) and 0.97 (95 % CI: 0.94-1.00), respectively. The AUCs of CXCL9 and CXCL11 decreased with the advancement of age. The decision curves of CXCL9 and CXCL11 showed net benefits in both centers. CXCL9 and CXCL11 were upregulated in BCG-treated macrophages. Pleural fluid from TPE and conditioned medium from BCG-treated macrophages were chemotactic for Th cells. Anti-CXCL9 or CXCL11 neutralizing antibodies could partly block the chemotactic activity. CONCLUSIONS: Pleural CXCL9 and CXCL11 are potential diagnostic markers for TPE, but their diagnostic accuracy is compromised in elderly patients. CXCL9 and CXCL11 can promote the migration of peripheral Th cells, thus representing a therapeutic target for the treatment of TPE.


Assuntos
Quimiocina CXCL11 , Quimiocina CXCL9 , Derrame Pleural , Receptores CXCR3 , Tuberculose Pleural , Humanos , Quimiocina CXCL9/metabolismo , Quimiocina CXCL11/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Derrame Pleural/metabolismo , Derrame Pleural/diagnóstico , Receptores CXCR3/metabolismo , Tuberculose Pleural/diagnóstico , Tuberculose Pleural/metabolismo , Adulto , Ligantes , Método Duplo-Cego , Células THP-1 , Biomarcadores/metabolismo , Macrófagos/metabolismo , Estudos Prospectivos , Idoso , Curva ROC
18.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 197-204, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430022

RESUMO

Elevated homocysteine (Hcy) levels have been linked to the development of cardiovascular diseases, notably endothelial dysfunction, a critical precursor to atherosclerosis. In this extensive investigation, we explore the intricate pathways through which Hcy influences endothelial dysfunction, with particular attention to the CXCL10/CXCR3 axis. Employing a dual approach encompassing both in vitro and in vivo models, we scrutinize the repercussions of Hcy exposure on endothelial functionality. Our results reveal that Hcy significantly impairs crucial endothelial processes, including cell migration, proliferation, and tube formation. Concomitantly, Hcy upregulates the expression of adhesion molecules, exacerbating endothelial dysfunction. In a murine hyperhomocysteinemia (HHcy) model, we observed a parallel increase in plasma Hcy levels and adverse vascular effects. Moreover, our study unraveled a pivotal role of the CXCL10/CXCR3 axis in Hcy-induced endothelial dysfunction. Hcy exposure led to the upregulation of CXCL10 and CXCR3, both in vitro and in HHcy mice. Importantly, the blockade of this axis, achieved through specific antibodies or NBI-74330, mitigated the detrimental effects of Hcy on endothelial function. In conclusion, our findings illuminated the central role of the CXCL10/CXCR3 axis in mediating Hcy-induced endothelial dysfunction, providing valuable insights for potential therapeutic strategies in managing HHcy-related cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Quimiocina CXCL10 , Receptores CXCR3 , Animais , Camundongos , Homocisteína/farmacologia , Regulação para Cima , Quimiocina CXCL10/metabolismo , Receptores CXCR3/metabolismo
19.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732237

RESUMO

NanoLuc-mediated bioluminescence resonance energy transfer (NanoBRET) has gained popularity for its ability to homogenously measure ligand binding to G protein-coupled receptors (GPCRs), including the subfamily of chemokine receptors. These receptors, such as ACKR3, CXCR4, CXCR3, play a crucial role in the regulation of the immune system, are associated with inflammatory diseases and cancer, and are seen as promising drug targets. The aim of this study was to optimize NanoBRET-based ligand binding to NLuc-ACKR3 and NLuc-CXCR4 using different fluorescently labeled chemokine CXCL12 analogs and their use in a multiplex NanoBRET binding assay of two chemokine receptors at the same time. The four fluorescent CXCL12 analogs (CXCL12-AZD488, -AZD546, -AZD594, -AZD647) showed high-affinity saturable binding to both NLuc-ACKR3 and NLuc-CXCR4, with relatively low levels of non-specific binding. Additionally, the binding of all AZDye-labeled CXCL12s to Nluc receptors was inhibited by pharmacologically relevant unlabeled chemokines and small molecules. The NanoBRET binding assay for CXCL10-AZD488 binding to Nluc-CXCR3 was also successfully established and successfully employed for the simultaneous measurement of the binding of unlabeled small molecules to NLuc-CXCR3 and NLuc-CXCR4. In conclusion, multiplexing the NanoBRET-based competition binding assay is a promising tool for testing unlabeled (small) molecules against multiple GPCRs simultaneously.


Assuntos
Quimiocina CXCL12 , Ligação Proteica , Receptores CXCR3 , Receptores CXCR4 , Receptores CXCR , Humanos , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Receptores CXCR/genética , Quimiocina CXCL12/metabolismo , Receptores CXCR3/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Ligantes , Corantes Fluorescentes/química
20.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 512-518, 2024 Jun 18.
Artigo em Zh | MEDLINE | ID: mdl-38864138

RESUMO

OBJECTIVE: To investigate the characteristics of the CD8+ T cells infiltration from the 4 subtypes in medulloblastoma (MB), to analyze the relationship between CD8+ T cells infiltration and prognosis, to study the function of C-X-C motif chemokine ligand 11 (CXCL11) and its receptor in CD8+ T cells infiltration into tumors and to explore the potential mechanism, and to provide the necessary clinicopathological basis for exploring the immunotherapy of MB. METHODS: In the study, 48 clinical MB samples (12 cases in each of 4 subtypes) were selected from the multiple medical center from 2012 to 2019. The transcriptomics analysis for the tumor of 48 clinical samples was conducted on the NanoString PanCancer IO360TM Panel (NanoString Technologies). Immunohistochemistry (IHC) staining of formalin-fixed, paraffin-embedded sections from MB was carried out using CD8 primary antibody to analyze diffe-rential quantities of CD8+ T cells in the MB four subtypes. Through bioinformatics analysis, the relationship between CD8+T cells infiltration and prognosis of the patients and the expression differences of various chemokines in the different subtypes of MB were investigated. The expression of CXCR3 receptor on the surface of CD8+T cells in MB was verified by double immunofluorescence staining, and the underlying molecular mechanism of CD8+T cells infiltration into the tumor was explored. RESULTS: The characteristic index of CD8+T cells in the WNT subtype of MB was relatively high, suggesting that the number of CD8+T cells in the WNT subtype was significantly higher than that in the other three subtypes, which was confirmed by CD8 immunohistochemical staining and Gene Expression Omnibus (GEO) database analysis by using R2 online data analysis platform. And the increase of CD8+T cells infiltration was positively correlated with the patient survival. The expression level of CXCL11 in the WNT subtype MB was significantly higher than that of the other three subtypes. Immunofluorescence staining showed the presence of CXCL11 receptor, CXCR3, on the surface of CD8+T cells, suggesting that the CD8+T cells might be attracted to the MB microenvironment by CXCL11 through CXCR3. CONCLUSION: The CD8+T cells infiltrate more in the WNT subtype MB than other subtypes. The mechanism may be related to the activation of CXCL11-CXCR3 chemokine system, and the patients with more infiltration of CD8+T cells in tumor have better prognosis. This finding may provide the necessary clinicopathological basis for the regulatory mechanism of CD8+T cells infiltration in MB, and give a new potential therapeutic target for the future immunotherapy of MB.


Assuntos
Linfócitos T CD8-Positivos , Quimiocina CXCL11 , Meduloblastoma , Receptores CXCR3 , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Meduloblastoma/imunologia , Meduloblastoma/patologia , Meduloblastoma/classificação , Meduloblastoma/genética , Meduloblastoma/metabolismo , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL11/genética , Prognóstico , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias Cerebelares/imunologia , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/metabolismo , Masculino , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA