Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.030
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 23(1): 62-74, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764490

RESUMO

The molecular mechanisms governing orderly shutdown and retraction of CD4+ type 1 helper T (TH1) cell responses remain poorly understood. Here we show that complement triggers contraction of TH1 responses by inducing intrinsic expression of the vitamin D (VitD) receptor and the VitD-activating enzyme CYP27B1, permitting T cells to both activate and respond to VitD. VitD then initiated the transition from pro-inflammatory interferon-γ+ TH1 cells to suppressive interleukin-10+ cells. This process was primed by dynamic changes in the epigenetic landscape of CD4+ T cells, generating super-enhancers and recruiting several transcription factors, notably c-JUN, STAT3 and BACH2, which together with VitD receptor shaped the transcriptional response to VitD. Accordingly, VitD did not induce interleukin-10 expression in cells with dysfunctional BACH2 or STAT3. Bronchoalveolar lavage fluid CD4+ T cells of patients with COVID-19 were TH1-skewed and showed de-repression of genes downregulated by VitD, from either lack of substrate (VitD deficiency) and/or abnormal regulation of this system.


Assuntos
Interferon gama/imunologia , Interleucina-10/imunologia , SARS-CoV-2/imunologia , Células Th1/imunologia , Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , COVID-19/imunologia , COVID-19/patologia , Complemento C3a/imunologia , Complemento C3b/imunologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ativação Linfocitária/imunologia , Receptores de Calcitriol/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Transcrição Gênica/genética
2.
Cell ; 173(5): 1135-1149.e15, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29754817

RESUMO

A primary cause of disease progression in type 2 diabetes (T2D) is ß cell dysfunction due to inflammatory stress and insulin resistance. However, preventing ß cell exhaustion under diabetic conditions is a major therapeutic challenge. Here, we identify the vitamin D receptor (VDR) as a key modulator of inflammation and ß cell survival. Alternative recognition of an acetylated lysine in VDR by bromodomain proteins BRD7 and BRD9 directs association to PBAF and BAF chromatin remodeling complexes, respectively. Mechanistically, ligand promotes VDR association with PBAF to effect genome-wide changes in chromatin accessibility and enhancer landscape, resulting in an anti-inflammatory response. Importantly, pharmacological inhibition of BRD9 promotes PBAF-VDR association to restore ß cell function and ameliorate hyperglycemia in murine T2D models. These studies reveal an unrecognized VDR-dependent transcriptional program underpinning ß cell survival and identifies the VDR:PBAF/BAF association as a potential therapeutic target for T2D.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Receptores de Calcitriol/metabolismo , Fatores de Transcrição/metabolismo , Vitamina D/farmacologia , Animais , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Montagem e Desmontagem da Cromatina , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Humanos , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mutagênese Sítio-Dirigida , Fosforilação Oxidativa/efeitos dos fármacos , Ligação Proteica , Interferência de RNA , RNA Guia de Cinetoplastídeos/genética , RNA Interferente Pequeno/metabolismo , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos
4.
Cell ; 159(1): 80-93, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25259922

RESUMO

The poor clinical outcome in pancreatic ductal adenocarcinoma (PDA) is attributed to intrinsic chemoresistance and a growth-permissive tumor microenvironment. Conversion of quiescent to activated pancreatic stellate cells (PSCs) drives the severe stromal reaction that characterizes PDA. Here, we reveal that the vitamin D receptor (VDR) is expressed in stroma from human pancreatic tumors and that treatment with the VDR ligand calcipotriol markedly reduced markers of inflammation and fibrosis in pancreatitis and human tumor stroma. We show that VDR acts as a master transcriptional regulator of PSCs to reprise the quiescent state, resulting in induced stromal remodeling, increased intratumoral gemcitabine, reduced tumor volume, and a 57% increase in survival compared to chemotherapy alone. This work describes a molecular strategy through which transcriptional reprogramming of tumor stroma enables chemotherapeutic response and suggests vitamin D priming as an adjunct in PDA therapy. PAPERFLICK:


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Calcitriol/análogos & derivados , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Receptores de Calcitriol/metabolismo , Adenocarcinoma/patologia , Animais , Calcitriol/farmacologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neoplasias Pancreáticas/patologia , Pancreatite/tratamento farmacológico , Pancreatite/prevenção & controle , Transdução de Sinais , Células Estromais/patologia
5.
Cell ; 153(3): 601-13, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23622244

RESUMO

Liver fibrosis is a reversible wound-healing response involving TGFß1/SMAD activation of hepatic stellate cells (HSCs). It results from excessive deposition of extracellular matrix components and can lead to impairment of liver function. Here, we show that vitamin D receptor (VDR) ligands inhibit HSC activation by TGFß1 and abrogate liver fibrosis, whereas Vdr knockout mice spontaneously develop hepatic fibrosis. Mechanistically, we show that TGFß1 signaling causes a redistribution of genome-wide VDR-binding sites (VDR cistrome) in HSCs and facilitates VDR binding at SMAD3 profibrotic target genes via TGFß1-dependent chromatin remodeling. In the presence of VDR ligands, VDR binding to the coregulated genes reduces SMAD3 occupancy at these sites, inhibiting fibrosis. These results reveal an intersecting VDR/SMAD genomic circuit that regulates hepatic fibrogenesis and define a role for VDR as an endocrine checkpoint to modulate the wound-healing response in liver. Furthermore, the findings suggest VDR ligands as a potential therapy for liver fibrosis.


Assuntos
Redes Reguladoras de Genes , Fígado/metabolismo , Fígado/patologia , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Animais , Calcitriol/análogos & derivados , Fibrose/prevenção & controle , Estudo de Associação Genômica Ampla , Células Estreladas do Fígado , Fígado/lesões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Receptores de Calcitriol/agonistas , Proteína Smad3/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta1/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(8): e2302259121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346204

RESUMO

Although evidence exists for a causal association between 25-hydroxyvitamin D (25(OH)D) serum levels, and multiple sclerosis (MS), the role of variation in vitamin D receptor (VDR) binding in MS is unknown. Here, we leveraged previously identified variants associated with allele imbalance in VDR binding (VDR-binding variant; VDR-BV) in ChIP-exo data from calcitriol-stimulated lymphoblastoid cell lines and 25(OH)D serum levels from genome-wide association studies to construct genetic instrumental variables (GIVs). GIVs are composed of one or more genetic variants that serve as proxies for exposures of interest. Here, GIVs for both VDR-BVs and 25(OH)D were used in a two-sample Mendelian Randomization study to investigate the relationship between VDR binding at a locus, 25(OH)D serum levels, and MS risk. Data for 13,598 MS cases and 38,887 controls of European ancestry from Kaiser Permanente Northern California, Swedish MS studies, and the UK Biobank were included. We estimated the association between each VDR-BV GIV and MS. Significant interaction between a VDR-BV GIV and a GIV for serum 25OH(D) was evidence for a causal association between VDR-BVs and MS unbiased by pleiotropy. We observed evidence for associations between two VDR-BVs (rs2881514, rs2531804) and MS after correction for multiple tests. There was evidence of interaction between rs2881514 and a 25(OH)D GIV, providing evidence of a causal association between rs2881514 and MS. This study is the first to demonstrate evidence that variation in VDR binding at a locus contributes to MS risk. Our results are relevant to other autoimmune diseases in which vitamin D plays a role.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Alelos , Estudo de Associação Genômica Ampla , Vitamina D/metabolismo , Calcitriol , Polimorfismo de Nucleotídeo Único
7.
J Immunol ; 213(6): 831-842, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39082935

RESUMO

Calcitriol, the bioactive form of vitamin D, exerts its biological functions by binding to its cognate receptor, the vitamin D receptor (VDR). The indicators of the severity of allergies and asthma have been linked to low vitamin D levels. However, the role of calcitriol in regulating IL-4 and IL-13, two cytokines pivotal to allergic inflammation, remained unclear. Our study observed diminished IL-4 and IL-13 secretion in murine and human Th2 cells treated with calcitriol. In murine Th2 cells, Gata3 expression was attenuated by calcitriol. However, the expression of the transcriptional repressor Gfi1, too, was attenuated in the presence of calcitriol. Ectopic expression of either Gfi1 or VDR impaired the secretion of IL-13 in Th2 cells. In murine Th2 cells, VDR interacted with Gata3 but not Gfi1. Gfi1 significantly impaired Il13 promoter activation, which calcitriol failed to restore. Conversely, calcitriol augmented Gfi1 recruitment to the Il13 promoter. Ecr, a conserved region between these two genes, which enhanced the transactivation of Il4 and Il13 promoters, is essential for calcitriol-mediated suppression of both the genes. Calcitriol augmented the recruitment of VDR to the Il13 promoter and Ecr regions. Gata3 recruitment was significantly impaired at the Il13 and Ecr loci in the presence of calcitriol but increased at the Il4 promoter. Furthermore, the recruitment of the histone deacetylase HDAC1 was universally increased at the promoters of Il4, Il13, and Ecr when calcitriol was present. Together, our data clearly elucidate that calcitriol modulates VDR, Gata3, and Gfi1 to suppress IL-4 and IL-13 production in Th2 cells.


Assuntos
Calcitriol , Fator de Transcrição GATA3 , Interleucina-13 , Interleucina-4 , Receptores de Calcitriol , Células Th2 , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Calcitriol/farmacologia , Animais , Interleucina-4/metabolismo , Interleucina-4/imunologia , Interleucina-13/metabolismo , Interleucina-13/imunologia , Camundongos , Células Th2/imunologia , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
8.
Am J Pathol ; 194(3): 369-383, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38104651

RESUMO

Macrophage autophagy dysfunction aggravates liver injury by activating inflammasomes, which can cleave pro-IL-1ß to its active, secreted form. We investigated whether the vitamin D/vitamin D receptor (VDR) axis could up-regulate macrophage autophagy function to inhibit the activation of inflammasome-dependent IL-1ß during cholestasis. Paricalcitol (PAL; VDR agonist) was intraperitoneally injected into bile duct-ligated mice for 5 days. Up-regulation of VDR expression by PAL reduced liver injury by reducing the oxidative stress-induced inflammatory reaction in macrophages. Moreover, PAL inhibited inflammasome-dependent IL-1ß generation. Mechanistically, the knockdown of VDR increased IL-1ß generation, whereas VDR overexpression exerted the opposite effect following tert-butyl hydroperoxide treatment. The inflammasome antagonist glyburide, the caspase-1-specific inhibitor YVAD, and the reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC) blocked the increase in Vdr shRNA-induced IL-1ß production. Interestingly, up-regulation of VDR also enhanced macrophage autophagy. Autophagy reduction impaired the up-regulation of VDR-inhibited macrophage inflammasome-generated IL-1ß, whereas autophagy induction showed a synergistic effect with VDR overexpression through ROS-p38 mitogen-activated protein kinase (MAPK) pathway. This result was confirmed by p38 MAPK inhibitor, MAPK activator, and ROS inhibitor NAC. Collectively, PAL triggered macrophage autophagy by suppressing activation of the ROS-p38 MAPK pathway, which, in turn, suppressed inflammasome-generated cleaved, active forms of IL-1ß, eventually leading to reduced inflammation. Thus, triggering the VDR may be a potential target for the anti-inflammatory treatment of cholestatic liver disease.


Assuntos
Colestase , Inflamassomos , Animais , Camundongos , Acetilcisteína , Autofagia/fisiologia , Colestase/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Calcitriol/metabolismo
9.
FASEB J ; 38(18): e70060, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39302807

RESUMO

The membrane lipid damage caused by reactive oxygen species(ROS) and various peroxides, namely lipid peroxidation, plays an important role in the progression of diabetic nephropathy (DN).We previously reported that vitamin D receptor(VDR) plays an active role in DN mice by modulating autophagy disorders. However, it is unclear whether the ATP-citrate lyase (ACLY)/NF-E2-related factor-2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway is associated with the reduction of lipid peroxidation by VDR in the DN model. We found that in the DN mouse model, VDR knockout significantly aggravated mitochondrial morphological damage caused by DN, increased the expression of ACLY, promoted the accumulation of ROS, lipid peroxidation products Malondialdehyde(MDA) and 4-hydroxy-2-nonenal (4-HNE),consumed the Nrf2/Keap1 system, thus increasing lipid peroxidation. However, the overexpression of VDR and intervention with the VDR agonist paricalcitol (Pari) can reduce the above damage. On the other hand, cellular experiments have shown that Pari can significantly reduce the elevated expression of ACLY and ROS induced by advanced glycation end products (AGE). However, ACLY overexpression partially eliminated the positive effects of the VDR agonist. Next, we verified the transcriptional regulation of ACLY by VDR through chromatin immunoprecipitation (ChIP)-qPCR and dual luciferase experiments. Moreover, in AGE models, knockdown of ACLY decreased lipid peroxidation and ROS production, while intervention with Nrf2 inhibitor ML385 partially weakened the protective effect of ACLY downregulation. In summary, VDR negatively regulates the expression of ACLY through transcription, thereby affecting the state of Nrf2/Keap1 system and regulating lipid peroxidation, thereby inhibiting kidney injury induced by DN.


Assuntos
Nefropatias Diabéticas , Peroxidação de Lipídeos , Receptores de Calcitriol , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de Calcitriol/metabolismo
10.
J Immunol ; 211(2): 175-179, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265392

RESUMO

Vitamin D deficiency is associated with the development of autoimmunity, which arises from defects in T cell tolerance to self-antigens. Interactions of developing T cells with medullary thymic epithelial cells, which express tissue-restricted Ags, are essential for the establishment of central tolerance. However, vitamin D signaling in the thymus is poorly characterized. We find that stromal and hematopoietic cells in the mouse thymus express the vitamin D receptor (Vdr) and Cyp27b1, the enzyme that produces hormonal 1,25-dihydroxyvitamin D (1,25D). Treatment of cultured thymic slices with 1,25D enhances expression of the critical medullary thymic epithelial cell transcription factor autoimmune regulator (Aire), its colocalization with the Vdr, and enhances tissue-restricted Ag gene expression. Moreover, the Vdr interacts with Aire in a 1,25D-dependent manner and recruits Aire to DNA at vitamin D response elements, where it acts as a Vdr coactivator. These data link vitamin D signaling directly to critical transcriptional events necessary for central tolerance.


Assuntos
Receptores de Calcitriol , Fatores de Transcrição , Animais , Camundongos , Células Epiteliais , Regulação da Expressão Gênica , Receptores de Calcitriol/metabolismo , Timo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitamina D/metabolismo , Proteína AIRE
11.
J Allergy Clin Immunol ; 153(4): 1025-1039, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38072196

RESUMO

BACKGROUND: Ectopic lymphoid tissues (eLTs) and associated follicular helper T (TFH) cells contribute to local immunoglobulin hyperproduction in nasal polyps (NPs). Follicular regulatory T (TFR) cells in secondary lymphoid organs counteract TFH cells and suppress immunoglobulin production; however, the presence and function of TFR cells in eLTs in peripheral diseased tissues remain poorly understood. OBJECTIVE: We sought to investigate the presence, phenotype, and function of TFR cells in NPs. METHODS: The presence, abundance, and phenotype of TFR cells in NPs were examined using single-cell RNA sequencing, immunofluorescence staining, and flow cytometry. Sorted polyp and circulating T-cell subsets were cocultured with autologous circulating naïve B cells, and cytokine and immunoglobulin production were measured by ELISA. RESULTS: TFR cells were primarily localized within eLTs in NPs. TFR cell frequency and TFR cell/TFH cell ratio were decreased in NPs with eLTs compared with NPs without eLTs and control inferior turbinate tissues. TFR cells displayed an overlapping phenotype with TFH cells and FOXP3+ regulatory T cells in NPs. Polyp TFR cells had reduced CTLA-4 expression and decreased capacity to inhibit TFH cell-induced immunoglobulin production compared with their counterpart in blood and tonsils. Blocking CTLA-4 abolished the suppressive effect of TFR cells. Lower vitamin D receptor expression was observed on polyp TFR cells compared with TFR cells in blood and tonsils. Vitamin D treatment upregulated CTLA-4 expression on polyp TFR cells and restored their suppressive function in vitro. CONCLUSIONS: Polyp TFR cells in eLTs have decreased CLTA-4 and vitamin D receptor expression and impaired capacity to suppress TFH cell-induced immunoglobulin production, which can be reversed by vitamin D treatment in vitro.


Assuntos
Pólipos Nasais , Estruturas Linfoides Terciárias , Humanos , Linfócitos T Reguladores/patologia , Linfócitos T Auxiliares-Indutores/patologia , Antígeno CTLA-4/metabolismo , Receptores de Calcitriol/metabolismo , Pólipos Nasais/patologia , Estruturas Linfoides Terciárias/patologia , Imunoglobulinas/metabolismo , Vitamina D/metabolismo
12.
J Infect Dis ; 230(1): 172-182, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052704

RESUMO

Concerns regarding toxicity and resistance of current drugs in visceral leishmaniasis have been reported. Antimicrobial peptides are considered to be promising candidates and among them human cathelicidin hCAP18/LL-37 showed significant parasite killing on drug-sensitive and resistant Leishmania promastigotes, in addition to its apoptosis-inducing role. Administration of hCAP18/LL-37 to infected macrophages also decreased parasite survival and increased the host favorable cytokine interleukin 12. However, 1,25-dihydroxyvitamin D3 (vitamin D3)-induced endogenous hCAP18/LL-37 production was hampered in infected THP-1 cells. Infection also suppressed the vitamin D3 receptor (VDR), transcription factor of hCAP18/LL-37. cAMP response element modulator (CREM), the repressor of VDR, was induced in infection, resulting in suppression of both VDR and cathelicidin expression. PGE2/cAMP/PKA axis was found to regulate CREM induction during infection and silencing CREM in infected cells and BALB/c mice led to decreased parasite survival. This study documents the antileishmanial potential of cathelicidin and further identifies CREM as a repressor of cathelicidin in Leishmania infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Modulador de Elemento de Resposta do AMP Cíclico , Leishmania donovani , Leishmaniose Visceral , Macrófagos , Camundongos Endogâmicos BALB C , Leishmania donovani/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Humanos , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Camundongos , Macrófagos/parasitologia , Macrófagos/metabolismo , Células THP-1 , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/genética , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Antiprotozoários/farmacologia , Feminino
13.
J Biol Chem ; 299(2): 102896, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36639026

RESUMO

We found previously that nuclear receptors (NRs) compete for heterodimerization with their common partner, retinoid X receptor (RXR), in a ligand-dependent manner. To investigate potential competition in their DNA binding, we monitored the mobility of retinoic acid receptor (RAR) and vitamin D receptor (VDR) in live cells by fluorescence correlation spectroscopy. First, specific agonist treatment and RXR coexpression additively increased RAR DNA binding, while both agonist and RXR were required for increased VDR DNA binding, indicating weaker DNA binding of the VDR/RXR dimer. Second, coexpression of RAR, VDR, and RXR resulted in competition for DNA binding. Without ligand, VDR reduced the DNA-bound fraction of RAR and vice versa, i.e., a fraction of RXR molecules was occupied by the competing partner. The DNA-bound fraction of either RAR or VDR was enhanced by its own and diminished by the competing NR's agonist. When treated with both ligands, the DNA-bound fraction of RAR increased as much as due to its own agonist, whereas that of VDR increased less. RXR agonist also increased DNA binding of RAR at the expense of VDR. In summary, competition between RAR and VDR for RXR is also manifested in their DNA binding in an agonist-dependent manner: RAR dominates over VDR in the absence of agonist or with both agonists present. Thus, side effects of NR-ligand-based (retinoids, thiazolidinediones) therapies may be ameliorated by other NR ligands and be at least partly explained by reduced DNA binding due to competition. Our results also complement the model of NR action by involving competition both for RXR and for DNA sites.


Assuntos
Receptores de Calcitriol , Receptores do Ácido Retinoico , Receptores X de Retinoides , DNA/metabolismo , Ligantes , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos e Nucleares , Receptores X de Retinoides/química , Receptores X de Retinoides/metabolismo , Tretinoína/farmacologia , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/metabolismo
14.
Breast Cancer Res ; 26(1): 132, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272208

RESUMO

BACKGROUND: Despite evidence indicating the dominance of cell-of-origin signatures in molecular tumor patterns, translating these genome-wide patterns into actionable insights has been challenging. This study introduces breast cancer cell-of-origin signatures that offer significant prognostic value across all breast cancer subtypes and various clinical cohorts, compared to previously developed genomic signatures. METHODS: We previously reported that triple hormone receptor (THR) co-expression patterns of androgen (AR), estrogen (ER), and vitamin D (VDR) receptors are maintained at the protein level in human breast cancers. Here, we developed corresponding mRNA signatures (THR-50 and THR-70) based on these patterns to categorize breast tumors by their THR expression levels. The THR mRNA signatures were evaluated across 56 breast cancer datasets (5040 patients) using Kaplan-Meier survival analysis, Cox proportional hazard regression, and unsupervised clustering. RESULTS: The THR signatures effectively predict both overall and progression-free survival across all evaluated datasets, independent of subtype, grade, or treatment status, suggesting improvement over existing prognostic signatures. Furthermore, they delineate three distinct ER-positive breast cancer subtypes with significant survival in differences-expanding on the conventional two subtypes. Additionally, coupling THR-70 with an immune signature identifies a predominantly ER-negative breast cancer subgroup with a highly favorable prognosis, comparable to ER-positive cases, as well as an ER-negative subgroup with notably poor outcome, characterized by a 15-fold shorter survival. CONCLUSIONS: The THR cell-of-origin signature introduces a novel dimension to breast cancer biology, potentially serving as a robust foundation for integrating additional prognostic biomarkers. These signatures offer utility as a prognostic index for stratifying existing breast cancer subtypes and for de novo classification of breast cancer cases. Moreover, THR signatures may also hold promise in predicting hormone treatment responses targeting AR and/or VDR.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Receptores Androgênicos , Receptores de Calcitriol , Receptores de Estrogênio , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Prognóstico , Receptores de Estrogênio/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Estimativa de Kaplan-Meier , Transcriptoma
15.
Mol Cancer ; 23(1): 196, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272040

RESUMO

Colitis-associated colorectal cancer (CAC) frequently develops in patients with inflammatory bowel disease (IBD) who have been exposed to a prolonged state of chronic inflammation. The investigation of pharmacological agents and their mechanisms to prevent precancerous lesions and inhibit their progression remains a significant focus and challenge in CAC research. Previous studies have demonstrated that vitexin effectively mitigates CAC, however, its precise mechanism of action warrants further exploration. This study reveals that the absence of the Vitamin D receptor (VDR) accelerates the progression from chronic colitis to colorectal cancer. Our findings indicate that vitexin can specifically target the VDR protein, facilitating its translocation into the cell nucleus to exert transcriptional activity. Additionally, through a co-culture model of macrophages and cancer cells, we observed that vitexin promotes the polarization of macrophages towards the M1 phenotype, a process that is dependent on VDR. Furthermore, ChIP-seq analysis revealed that vitexin regulates the transcriptional activation of phenazine biosynthesis-like domain protein (PBLD) via VDR. ChIP assays and dual luciferase reporter assays were employed to identify the functional PBLD regulatory region, confirming that the VDR/PBLD pathway is critical for vitexin-mediated regulation of macrophage polarization. Finally, in a mouse model with myeloid VDR gene knockout, we found that the protective effects of vitexin were abolished in mid-stage CAC. In summary, our study establishes that vitexin targets VDR and modulates macrophage polarization through the VDR/PBLD pathway, thereby alleviating the transition from chronic colitis to colorectal cancer.


Assuntos
Apigenina , Neoplasias Colorretais , Macrófagos , Receptores de Calcitriol , Apigenina/farmacologia , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/genética , Animais , Camundongos , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças , Colite/tratamento farmacológico , Colite/patologia , Colite/metabolismo , Colite/induzido quimicamente , Progressão da Doença , Células RAW 264.7 , Camundongos Endogâmicos C57BL
16.
Am J Transplant ; 24(7): 1132-1145, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38452932

RESUMO

Mycophenolate mofetil (MMF) is one of the most used immunosuppressive drugs in organ transplantation, but frequent gastrointestinal (GI) side effects through unknown mechanisms limit its clinical use. Gut microbiota and its metabolites were recently reported to play a vital role in MMF-induced GI toxicity, but the specific mechanism of how they interact with the human body is still unclear. Here, we found that secondary bile acids (BAs), as bacterial metabolites, were significantly reduced by MMF administration in the gut of mice. Microbiome data and fecal microbiota transfer model supported a microbiota-dependent effect on the reduction of secondary BAs. Supplementation of the secondary BA lithocholic acid alleviated MMF-induced weight loss, colonic inflammation, and oxidative phosphorylation damage. Genetic deletion of the vitamin D3 receptor (VDR), which serves as a primary colonic BA receptor, in colonic epithelial cells (VDRΔIEC) abolished the therapeutic effect of lithocholic acid on MMF-induced GI toxicity. Impressively, we discovered that paricalcitol, a Food and Drug Administration-approved VDR agonist that has been used in clinics for years, could effectively alleviate MMF-induced GI toxicity. Our study reveals a previously unrecognized mechanism of gut microbiota, BAs, and VDR signaling in MMF-induced GI side effects, offering potential therapeutic strategies for clinics.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Ácido Micofenólico , Receptores de Calcitriol , Animais , Ácido Micofenólico/farmacologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Receptores de Calcitriol/metabolismo , Ácidos e Sais Biliares/metabolismo , Imunossupressores , Camundongos Endogâmicos C57BL , Masculino , Gastroenteropatias/induzido quimicamente , Ácido Litocólico , Humanos
17.
Br J Haematol ; 204(4): 1507-1514, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38323352

RESUMO

The occurrence and severity of osteonecrosis in sickle cell anaemia (SCA) vary due to risk factors, including genetic modifiers. Bone morphogenetic proteins (BMPs), particularly BMP6, and the vitamin D receptor (VDR) play key roles in cartilage and bone metabolism, making them potential contributors to orthopaedic outcomes in SCA. Here, we evaluated the association of polymorphisms in BMP6 (rs3812163, rs270393 and rs449853) and VDR (FokI rs2228570 and Cdx2 rs11568820) genes with osteonecrosis risk in a Brazilian SCA cohort. A total of 177 unrelated SCA patients were selected. The AA genotype of BMP6 rs3812163 was independently associated with a lower osteonecrosis risk (p = 0.015; odds ratio (OR): 0.38; 95% confidence interval (CI): 0.18-0.83) and with the long-term cumulative incidence of osteonecrosis (p = 0.029; hazard ratio: 0.56, 95% CI: 0.34-0.94). The VDR rs2228570 TT genotype was independently associated with a lower osteonecrosis risk (p = 0.039; OR: 0.14; 95% CI: 0.02-0.90). In summary, our results provide evidence that BMP6 rs3812163 and the VDR rs2228570 might be implicated in osteonecrosis pathophysiology in SCA and might help identify individuals at high risk.


Assuntos
Anemia Falciforme , Osteonecrose , Humanos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Osteonecrose/genética , Anemia Falciforme/complicações , Anemia Falciforme/genética , Genótipo , Estudos de Casos e Controles , Proteína Morfogenética Óssea 6/genética , Receptores de Calcitriol/genética
18.
Cancer Causes Control ; 35(6): 907-919, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38351438

RESUMO

PURPOSE: Vitamin D has some anticancer properties that may decrease breast cancer risk and improve prognosis. The aim was to investigate associations between four previously studied VDR SNPs (Taq1, Tru91, Bsm1, and Fok1) and prognosis in different groups of breast cancer patients. METHODS: VDR genotyping of 1,017 breast cancer patients included 2002-2012 in Lund, Sweden, was performed using Oncoarray. Follow-up was until June 30, 2019. Clinical data and patient information were collected from medical records and questionnaires. Cox regression was used for survival analyses. RESULTS: Genotype frequencies were as follows: Fok1 (AA 15.7%, AG 49.1%, GG 35.1%), Bsm1 (CC 37.2%, CT 46.1%, TT 16.7%), Tru91 (CC 77.8%, CT 20.7%, TT 1.5%), and Taq1 (AA 37.2%, AG 46.2%, GG 16.6%). During follow-up there were 195 breast cancer events. The homozygous variants of Taq1 and Bsm1 were associated with reduced risk of breast cancer events (adjusted HR = 0.59, 95% CI 0.38-0.92 for Taq1 and adjusted HR = 0.61, 95% CI 0.40-0.94 for Bsm1). The G allele of the Fok1 was associated with increased risk of breast cancer events in small tumors (pT1, adjusted HR = 1.83, 95% CI 1.04-3.23) but not in large tumors (pT2/3/4, adjusted HR = 0.80, 95% CI 0.41-1.59) with a borderline interaction (Pinteraction = 0.058). No interactions between VDR genotypes and adjuvant treatments regarding breast cancer prognosis were detected. CONCLUSION: VDR genotypes were associated with breast cancer prognosis and the association might be modified by tumor size. Further research is needed to confirm the findings and elucidate their potential clinical implications.


Assuntos
Neoplasias da Mama , Receptores de Calcitriol , Receptores de Calcitriol/genética , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Prognóstico , Estudos de Coortes , Polimorfismo de Nucleotídeo Único , Suécia , Genótipo , Desequilíbrio de Ligação , Análise Multivariada , Estimativa de Kaplan-Meier
19.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35998896

RESUMO

Nuclear receptors (NRs) are ligand-activated transcription factors, which constitute one of the most important targets for drug discovery. Current computational strategies mainly focus on a single target, and the transfer of learned knowledge among NRs was not considered yet. Herein we proposed a novel computational framework named NR-Profiler for prediction of potential NR modulators with high affinity and specificity. First, we built a comprehensive NR data set including 42 684 interactions to connect 42 NRs and 31 033 compounds. Then, we used multi-task deep neural network and multi-task graph convolutional neural network architectures to construct multi-task multi-classification models. To improve the predictive capability and robustness, we built a consensus model with an area under the receiver operating characteristic curve (AUC) = 0.883. Compared with conventional machine learning and structure-based approaches, the consensus model showed better performance in external validation. Using this consensus model, we demonstrated the practical value of NR-Profiler in virtual screening for NRs. In addition, we designed a selectivity score to quantitatively measure the specificity of NR modulators. Finally, we developed a freely available standalone software for users to make profiling predictions for their compounds of interest. In summary, our NR-Profiler provides a useful tool for NR-profiling prediction and is expected to facilitate NR-based drug discovery.


Assuntos
Aprendizado Profundo , Receptores Artificiais , Receptores dos Hormônios Gastrointestinais , Receptores de Imunoglobulina Polimérica , Receptor do Fator Ativador de Células B , Proteína Semelhante a Receptor de Calcitonina , Receptor gp130 de Citocina , Antagonistas dos Receptores H2 da Histamina , Ligantes , Antagonistas dos Receptores de Neurocinina-1 , Proteínas Proto-Oncogênicas c-met , Receptor de Glutamato Metabotrópico 5 , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Receptores de Hidrocarboneto Arílico , Receptores de Calcitriol , Receptores Citoplasmáticos e Nucleares , Receptores Muscarínicos
20.
Cell Tissue Res ; 396(3): 343-351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492000

RESUMO

Dentin is a permeable and complex tubular composite formed by the mineralization of predentin that mineralization and repair are of considerable clinical interest during dentin homeostasis. The role of Vdr, a receptor of vitamin D, in dentin homeostasis remains unexplored. The aim of the present study was to assess the impact of Vdr on predentin mineralization and dental repair. Vdr-knockout (Vdr-/-) mice models were constructed; histology and immunohistochemistry analyses were conducted for both WT and Vdr-/- mice. The finding revealed a thicker predentin in Vdr-/- mice, characterized by higher expression of biglycan and decorin. A dental injury model was employed to observe tertiary dentin formation in Vdr-/- mice with dental injuries. Results showed that tertiary dentin was harder to form in Vdr-/- mice with dental injury. Over time, heightened pulp invasion was observed at the injury site in Vdr-/- mice. Expression of biglycan and decorin was reduced in the predentin at the injury site in the Vdr-/- mice by immunohistochemistry. Taken together, our results imply that Vdr plays a regulatory role in predentin mineralization and tertiary dentin formation during dentin homeostasis.


Assuntos
Dentina , Camundongos Knockout , Receptores de Calcitriol , Animais , Receptores de Calcitriol/metabolismo , Dentina/metabolismo , Camundongos , Biglicano/metabolismo , Cicatrização , Camundongos Endogâmicos C57BL , Decorina/metabolismo , Calcificação Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA