Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 615
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 136(2): 215-33, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19167326

RESUMO

MicroRNAs (miRNAs) are endogenous approximately 23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões 3' não Traduzidas/metabolismo , Animais , Humanos
2.
Cell ; 137(4): 647-58, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19409607

RESUMO

MicroRNAs (miRNAs) are posttranscriptional modulators of gene expression and play an important role in many developmental processes. We report here that expression of microRNA-145 (miR-145) is low in self-renewing human embryonic stem cells (hESCs) but highly upregulated during differentiation. We identify the pluripotency factors OCT4, SOX2, and KLF4 as direct targets of miR-145 and show that endogenous miR-145 represses the 3' untranslated regions of OCT4, SOX2, and KLF4. Increased miR-145 expression inhibits hESC self-renewal, represses expression of pluripotency genes, and induces lineage-restricted differentiation. Loss of miR-145 impairs differentiation and elevates OCT4, SOX2, and KLF4. Furthermore, we find that the miR-145 promoter is bound and repressed by OCT4 in hESCs. This work reveals a direct link between the core reprogramming factors and miR-145 and uncovers a double-negative feedback loop involving OCT4, SOX2, KLF4, and miR-145.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição SOXB1/genética , Regiões 3' não Traduzidas/metabolismo , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Células-Tronco Pluripotentes/metabolismo
3.
Cell ; 138(4): 673-84, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19703394

RESUMO

In cancer cells, genetic alterations can activate proto-oncogenes, thereby contributing to tumorigenesis. However, the protein products of oncogenes are sometimes overexpressed without alteration of the proto-oncogene. Helping to explain this phenomenon, we found that when compared to similarly proliferating nontransformed cell lines, cancer cell lines often expressed substantial amounts of mRNA isoforms with shorter 3' untranslated regions (UTRs). These shorter isoforms usually resulted from alternative cleavage and polyadenylation (APA). The APA had functional consequences, with the shorter mRNA isoforms exhibiting increased stability and typically producing ten-fold more protein, in part through the loss of microRNA-mediated repression. Moreover, expression of the shorter mRNA isoform of the proto-oncogene IGF2BP1/IMP-1 led to far more oncogenic transformation than did expression of the full-length, annotated mRNA. The high incidence of APA in cancer cells, with consequent loss of 3'UTR repressive elements, suggests a pervasive role for APA in oncogene activation without genetic alteration.


Assuntos
Regiões 3' não Traduzidas/metabolismo , Processamento Alternativo , Oncogenes , Poliadenilação , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Ciclina D2 , Ciclinas/genética , Ciclinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Proto-Oncogene Mas , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Fase S
4.
Cell ; 134(2): 208-10, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18662535

RESUMO

The use of alternative polyadenylation sites produces mRNA isoforms with different 3' untranslated regions. A recent report in Science (Sandberg et al., 2008) suggests that alternative polyadenylation is connected to microRNA-mediated regulation of gene expression as part of a global program for cellular proliferation.


Assuntos
Regiões 3' não Traduzidas/metabolismo , Proliferação de Células , Regulação da Expressão Gênica , Poliadenilação , Animais , Humanos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
5.
Cell ; 134(1): 175-87, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18614020

RESUMO

The brain produces two brain-derived neurotrophic factor (BDNF) transcripts, with either short or long 3' untranslated regions (3' UTRs). The physiological significance of the two forms of mRNAs encoding the same protein is unknown. Here, we show that the short and long 3' UTR BDNF mRNAs are involved in different cellular functions. The short 3' UTR mRNAs are restricted to somata, whereas the long 3' UTR mRNAs are also localized in dendrites. In a mouse mutant where the long 3' UTR is truncated, dendritic targeting of BDNF mRNAs is impaired. There is little BDNF in hippocampal dendrites despite normal levels of total BDNF protein. This mutant exhibits deficits in pruning and enlargement of dendritic spines, as well as selective impairment in long-term potentiation in dendrites, but not somata, of hippocampal neurons. These results provide insights into local and dendritic actions of BDNF and reveal a mechanism for differential regulation of subcellular functions of proteins.


Assuntos
Regiões 3' não Traduzidas/análise , Regiões 3' não Traduzidas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Animais , Dendritos/química , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/química , Neurônios/citologia , Poliadenilação , Biossíntese de Proteínas , Receptor trkB/análise
6.
Cell ; 132(5): 860-74, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18329371

RESUMO

To explore the role of Dicer-dependent control mechanisms in B lymphocyte development, we ablated this enzyme in early B cell progenitors. This resulted in a developmental block at the pro- to pre-B cell transition. Gene-expression profiling revealed a miR-17 approximately 92 signature in the 3'UTRs of genes upregulated in Dicer-deficient pro-B cells; a top miR-17 approximately 92 target, the proapoptotic molecule Bim, was highly upregulated. Accordingly, B cell development could be partially rescued by ablation of Bim or transgenic expression of the prosurvival protein Bcl-2. This allowed us to assess the impact of Dicer deficiency on the V(D)J recombination program in developing B cells. We found intact Ig gene rearrangements in immunoglobulin heavy (IgH) and kappa chain loci, but increased sterile transcription and usage of D(H) elements of the DSP family in IgH, and increased N sequence addition in Igkappa due to deregulated transcription of the terminal deoxynucleotidyl transferase gene.


Assuntos
Diversidade de Anticorpos , Linfócitos B/citologia , Sobrevivência Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regiões 3' não Traduzidas/química , Regiões 3' não Traduzidas/metabolismo , Animais , Northern Blotting , Perfilação da Expressão Gênica , Rearranjo Gênico do Linfócito B , Imunoglobulinas/genética , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease III , Organismos Livres de Patógenos Específicos
7.
Cell ; 132(5): 875-86, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18329372

RESUMO

miR-17 approximately 92, miR-106b approximately 25, and miR-106a approximately 363 belong to a family of highly conserved miRNA clusters. Amplification and overexpression of miR-1792 is observed in human cancers, and its oncogenic properties have been confirmed in a mouse model of B cell lymphoma. Here we show that mice deficient for miR-17 approximately 92 die shortly after birth with lung hypoplasia and a ventricular septal defect. The miR-17 approximately 92 cluster is also essential for B cell development. Absence of miR-17 approximately 92 leads to increased levels of the proapoptotic protein Bim and inhibits B cell development at the pro-B to pre-B transition. Furthermore, while ablation of miR-106b approximately 25 or miR-106a approximately 363 has no obvious phenotypic consequences, compound mutant embryos lacking both miR-106b approximately 25 and miR-17 approximately 92 die at midgestation. These results provide key insights into the physiologic functions of this family of microRNAs and suggest a link between the oncogenic properties of miR-17 approximately 92 and its functions during B lymphopoiesis and lung development.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Família Multigênica , Deleção de Sequência , Regiões 3' não Traduzidas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Linfócitos B/citologia , Proteína 11 Semelhante a Bcl-2 , Sobrevivência Celular , Células-Tronco Embrionárias/metabolismo , Feto/citologia , Genes Letais , Comunicação Interventricular/genética , Pneumopatias/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/metabolismo
8.
Cell ; 132(3): 434-48, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18267074

RESUMO

Cytoplasmic polyadenylation plays a key role in the translational control of mRNAs driving biological processes such as gametogenesis, cell-cycle progression, and synaptic plasticity. What determines the distinct time of polyadenylation and extent of translational control of a given mRNA, however, is poorly understood. The polyadenylation-regulated translation is controlled by the cytoplasmic polyadenylation element (CPE) and its binding protein, CPEB, which can assemble both translational repression or activation complexes. Using a combination of mutagenesis and experimental validation of genome-wide computational predictions, we show that the number and relative position of two elements, the CPE and the Pumilio-binding element, with respect to the polyadenylation signal define a combinatorial code that determines whether an mRNA will be translationally repressed by CPEB, as well as the extent and time of cytoplasmic polyadenylation-dependent translational activation.


Assuntos
Regiões 3' não Traduzidas/metabolismo , Regulação da Expressão Gênica , Poliadenilação , Biossíntese de Proteínas , Sinais de Poliadenilação na Ponta 3' do RNA , Regiões 3' não Traduzidas/genética , Animais , Ciclina B/genética , Ciclina B/metabolismo , Citoplasma/metabolismo , Humanos , Meiose , Camundongos , Mutagênese , Oócitos/metabolismo , Poliadenilação/efeitos dos fármacos , Progesterona/farmacologia , RNA Mensageiro Estocado/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
9.
Mol Cell ; 33(3): 365-76, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19217410

RESUMO

Pre-mRNA 3' end formation is an essential step in eukaryotic gene expression. Over half of human genes produce alternatively polyadenylated mRNAs, suggesting that regulated polyadenylation is an important mechanism for posttranscriptional gene control. Although a number of mammalian mRNA 3' processing factors have been identified, the full protein composition of the 3' processing machinery has not been determined, and its structure is unknown. Here we report the purification and subsequent proteomic and structural characterization of human mRNA 3' processing complexes. Remarkably, the purified 3' processing complex contains approximately 85 proteins, including known and new core 3' processing factors and over 50 proteins that may mediate crosstalk with other processes. Electron microscopic analyses show that the core 3' processing complex has a distinct "kidney" shape and is approximately 250 A in length. Together, our data has revealed the complexity and molecular architecture of the pre-mRNA 3' processing complex.


Assuntos
Processamento de Terminações 3' de RNA , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/metabolismo , Humanos , Poliadenilação , Proteoma/análise , Proteômica , Precursores de RNA/análise , Precursores de RNA/ultraestrutura
10.
Mol Cell ; 36(2): 172-3, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19854126

RESUMO

In this issue of Molecular Cell, Yamagata et al. (2009) provide insight into the complex posttranscriptional regulation of miRNA biogenesis by showing that the processing of a subset of miRNAs is inhibited by the estrogen receptor.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , MicroRNAs/biossíntese , Regiões 3' não Traduzidas/metabolismo , Animais , Humanos , Camundongos , MicroRNAs/genética , Modelos Genéticos , Ribonuclease III/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
11.
Mol Cell ; 33(1): 87-96, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19150430

RESUMO

HIV-1 Nef plays important roles in HIV-1 replication and pathogenesis. It is translated from completely spliced HIV-1 RNA, and its expression is inherently regulated at the levels of viral DNA transcription and RNA splicing. Here we show that Sam68 cytoplasmic mutants potently suppress Nef expression. The suppression requires Sam68 domain aa 269-321 and is correlated with its ability to induce stress granules. In addition, the suppression is specific to Nef, and direct binding to nef mRNA 3'UTR confers the suppression specificity. Furthermore, nef mRNA is targeted to and enriched in these induced stress granules. Importantly, Nef suppression occurs in the context of HIV-1 infection of CD4+ T lymphocytes with little MHC I and CD4 downregulation. Taken together, these results demonstrate that stress granule induction and nef mRNA sequestration account for this translational suppression of Nef expression and offer a strategy for development of anti-HIV therapeutics to buttress our fight against HIV/AIDS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a DNA/metabolismo , HIV-1/genética , Mutação/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Regiões 3' não Traduzidas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Biomarcadores/metabolismo , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/química , Regulação para Baixo , HIV-1/fisiologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Jurkat , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Frações Subcelulares/metabolismo , Supressão Genética , Linfócitos T/citologia , Linfócitos T/virologia , Replicação Viral
12.
Genes Dev ; 23(2): 195-207, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19131435

RESUMO

Local translation of asymmetrically enriched mRNAs is a powerful mechanism for functional polarization of the cell. In Drosophila, exclusive accumulation of Oskar protein at the posterior pole of the oocyte is essential for development of the future embryo. This is achieved by the formation of a dynamic oskar ribonucleoprotein (RNP) complex regulating the transport of oskar mRNA, its translational repression while unlocalized, and its translational activation upon arrival at the posterior pole. We identified the nucleo-cytoplasmic shuttling protein PTB (polypyrimidine tract-binding protein)/hnRNP I as a new factor associating with the oskar RNP in vivo. While PTB function is largely dispensable for oskar mRNA transport, it is necessary for translational repression of the localizing mRNA. Unexpectedly, a cytoplasmic form of PTB can associate with oskar mRNA and repress its translation, suggesting that nuclear recruitment of PTB to oskar complexes is not required for its regulatory function. Furthermore, PTB binds directly to multiple sites along the oskar 3' untranslated region and mediates assembly of high-order complexes containing multiple oskar RNA molecules in vivo. Thus, PTB is a key structural component of oskar RNP complexes that dually controls formation of high-order RNP particles and translational silencing.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ribonucleoproteínas/metabolismo , Regiões 3' não Traduzidas/metabolismo , Animais , Sítios de Ligação , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Perfilação da Expressão Gênica , Mutação , Oogênese/fisiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Ligação Proteica , Biossíntese de Proteínas/genética
13.
Genes Dev ; 23(7): 862-76, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19293287

RESUMO

The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3' untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with gamma-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica , Genes p53/fisiologia , MicroRNAs/metabolismo , Regiões 3' não Traduzidas/metabolismo , Animais , Apoptose/fisiologia , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Embrião não Mamífero/metabolismo , Teste de Complementação Genética , Humanos , Dados de Sequência Molecular , Ligação Proteica , Estresse Fisiológico/fisiologia , Peixe-Zebra
14.
Genes Dev ; 23(18): 2179-91, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19696147

RESUMO

Little is known about the contribution of translational control to circadian rhythms. To address this issue and in particular translational control by microRNAs (miRNAs), we knocked down the miRNA biogenesis pathway in Drosophila circadian tissues. In combination with an increase in circadian-mediated transcription, this severely affected Drosophila behavioral rhythms, indicating that miRNAs function in circadian timekeeping. To identify miRNA-mRNA pairs important for this regulation, immunoprecipitation of AGO1 followed by microarray analysis identified mRNAs under miRNA-mediated control. They included three core clock mRNAs-clock (clk), vrille (vri), and clockworkorange (cwo). To identify miRNAs involved in circadian timekeeping, we exploited circadian cell-specific inhibition of the miRNA biogenesis pathway followed by tiling array analysis. This approach identified miRNAs expressed in fly head circadian tissue. Behavioral and molecular experiments show that one of these miRNAs, the developmental regulator bantam, has a role in the core circadian pacemaker. S2 cell biochemical experiments indicate that bantam regulates the translation of clk through an association with three target sites located within the clk 3' untranslated region (UTR). Moreover, clk transgenes harboring mutated bantam sites in their 3' UTRs rescue rhythms of clk mutant flies much less well than wild-type CLK transgenes.


Assuntos
Ritmo Circadiano/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Regiões 3' não Traduzidas/metabolismo , Animais , Comportamento Animal/fisiologia , Sítios de Ligação , Proteínas CLOCK , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Evolução Molecular , Expressão Gênica , Cabeça/fisiologia , Masculino , MicroRNAs/biossíntese , MicroRNAs/genética , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Nature ; 458(7239): 762-5, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19219026

RESUMO

Altered glucose metabolism in cancer cells is termed the Warburg effect, which describes the propensity of most cancer cells to take up glucose avidly and convert it primarily to lactate, despite available oxygen. Notwithstanding the renewed interest in the Warburg effect, cancer cells also depend on continued mitochondrial function for metabolism, specifically glutaminolysis that catabolizes glutamine to generate ATP and lactate. Glutamine, which is highly transported into proliferating cells, is a major source of energy and nitrogen for biosynthesis, and a carbon substrate for anabolic processes in cancer cells, but the regulation of glutamine metabolism is not well understood. Here we report that the c-Myc (hereafter referred to as Myc) oncogenic transcription factor, which is known to regulate microRNAs and stimulate cell proliferation, transcriptionally represses miR-23a and miR-23b, resulting in greater expression of their target protein, mitochondrial glutaminase, in human P-493 B lymphoma cells and PC3 prostate cancer cells. This leads to upregulation of glutamine catabolism. Glutaminase converts glutamine to glutamate, which is further catabolized through the tricarboxylic acid cycle for the production of ATP or serves as substrate for glutathione synthesis. The unique means by which Myc regulates glutaminase uncovers a previously unsuspected link between Myc regulation of miRNAs, glutamine metabolism, and energy and reactive oxygen species homeostasis.


Assuntos
Regulação Enzimológica da Expressão Gênica , Glutaminase/metabolismo , Glutamina/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/enzimologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regiões 3' não Traduzidas/metabolismo , Linhagem Celular Tumoral , Humanos
16.
Nature ; 460(7255): 642-6, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19561591

RESUMO

One of the most distinctive steps in the development of the vertebrate nervous system occurs at mitotic exit when cells lose multipotency and begin to develop stable connections that will persist for a lifetime. This transition is accompanied by a switch in ATP-dependent chromatin-remodelling mechanisms that appears to coincide with the final mitotic division of neurons. This switch involves the exchange of the BAF53a (also known as ACTL6a) and BAF45a (PHF10) subunits within Swi/Snf-like neural-progenitor-specific BAF (npBAF) complexes for the homologous BAF53b (ACTL6b) and BAF45b (DPF1) subunits within neuron-specific BAF (nBAF) complexes in post-mitotic neurons. The subunits of the npBAF complex are essential for neural-progenitor proliferation, and mice with reduced dosage for the genes encoding its subunits have defects in neural-tube closure similar to those in human spina bifida, one of the most serious congenital birth defects. In contrast, BAF53b and the nBAF complex are essential for an evolutionarily conserved program of post-mitotic neural development and dendritic morphogenesis. Here we show that this essential transition is mediated by repression of BAF53a by miR-9* and miR-124. We find that BAF53a repression is mediated by sequences in the 3' untranslated region corresponding to the recognition sites for miR-9* and miR-124, which are selectively expressed in post-mitotic neurons. Mutation of these sites led to persistent expression of BAF53a and defective activity-dependent dendritic outgrowth in neurons. In addition, overexpression of miR-9* and miR-124 in neural progenitors caused reduced proliferation. Previous studies have indicated that miR-9* and miR-124 are repressed by the repressor-element-1-silencing transcription factor (REST, also known as NRSF). Indeed, expression of REST in post-mitotic neurons led to derepression of BAF53a, indicating that REST-mediated repression of microRNAs directs the essential switch of chromatin regulatory complexes.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Sistema Nervoso/embriologia , Regiões 3' não Traduzidas/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Células CHO , Linhagem Celular , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cricetinae , Cricetulus , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dendritos/fisiologia , Camundongos , Camundongos Transgênicos , Mitose , Sistema Nervoso/citologia , Neurônios/citologia , Proteínas Repressoras/metabolismo , Células-Tronco/metabolismo
17.
Nature ; 458(7242): 1185-90, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19322177

RESUMO

Toll-like receptors (TLRs) recognize microbial components, and evoke inflammation and immune responses. TLR stimulation activates complex gene expression networks that regulate the magnitude and duration of the immune reaction. Here we identify the TLR-inducible gene Zc3h12a as an immune response modifier that has an essential role in preventing immune disorders. Zc3h12a-deficient mice suffered from severe anaemia, and most died within 12 weeks. Zc3h12a(-/-) mice also showed augmented serum immunoglobulin levels and autoantibody production, together with a greatly increased number of plasma cells, as well as infiltration of plasma cells to the lung. Most Zc3h12a(-/-) splenic T cells showed effector/memory characteristics and produced interferon-gamma in response to T-cell receptor stimulation. Macrophages from Zc3h12a(-/-) mice showed highly increased production of interleukin (IL)-6 and IL-12p40 (also known as IL12b), but not TNF, in response to TLR ligands. Although the activation of TLR signalling pathways was normal, Il6 messenger RNA decay was severely impaired in Zc3h12a(-/-) macrophages. Overexpression of Zc3h12a accelerated Il6 mRNA degradation via its 3'-untranslated region (UTR), and destabilized RNAs with 3'-UTRs for genes including Il6, Il12p40 and the calcitonin receptor gene Calcr. Zc3h12a contains a putative amino-terminal nuclease domain, and the expressed protein had RNase activity, consistent with a role in the decay of Il6 mRNA. Together, these results indicate that Zc3h12a is an essential RNase that prevents immune disorders by directly controlling the stability of a set of inflammatory genes.


Assuntos
Imunidade/genética , Imunidade/imunologia , Estabilidade de RNA , Ribonucleases/metabolismo , Regiões 3' não Traduzidas/genética , Regiões 3' não Traduzidas/metabolismo , Anemia/complicações , Anemia/genética , Animais , Autoanticorpos/sangue , Autoanticorpos/imunologia , Doenças Autoimunes/complicações , Doenças Autoimunes/imunologia , Linhagem Celular , Citocinas/biossíntese , Citocinas/genética , Doenças Fetais/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Plasmócitos/citologia , Ribonucleases/deficiência , Ribonucleases/genética , Linfócitos T/imunologia
18.
Nature ; 453(7191): 115-9, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18451862

RESUMO

RNA localization is important for the establishment and maintenance of polarity in multiple cell types. Localized RNAs are usually transported along microtubules or actin filaments and become anchored at their destination to some underlying subcellular structure. Retention commonly involves actin or actin-associated proteins, although cytokeratin filaments and dynein anchor certain RNAs. RNA localization is important for diverse processes ranging from cell fate determination to synaptic plasticity; however, so far there have been few comprehensive studies of localized RNAs in mammalian cells. Here we have addressed this issue, focusing on migrating fibroblasts that polarize to form a leading edge and a tail in a process that involves asymmetric distribution of RNAs. We used a fractionation scheme combined with microarrays to identify, on a genome-wide scale, RNAs that localize in protruding pseudopodia of mouse fibroblasts in response to migratory stimuli. We find that a diverse group of RNAs accumulates in such pseudopodial protrusions. Through their 3' untranslated regions these transcripts are anchored in granules concentrated at the plus ends of detyrosinated microtubules. RNAs in the granules associate with the adenomatous polyposis coli (APC) tumour suppressor and the fragile X mental retardation protein (FMRP). APC is required for the accumulation of transcripts in protrusions. Our results suggest a new type of RNA anchoring mechanism as well as a new, unanticipated function for APC in localizing RNAs.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Genômica , Pseudópodes/genética , Pseudópodes/metabolismo , Transporte de RNA , RNA/metabolismo , Regiões 3' não Traduzidas/genética , Regiões 3' não Traduzidas/metabolismo , Animais , Movimento Celular , Polaridade Celular , Fibroblastos/citologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Genoma/genética , Humanos , Camundongos , Microtúbulos/química , Microtúbulos/metabolismo , Células NIH 3T3 , Análise de Sequência com Séries de Oligonucleotídeos , RNA/análise , RNA/genética , RNA/isolamento & purificação
19.
Trends Biochem Sci ; 34(7): 324-31, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19535251

RESUMO

Functionally related genes are coregulated by specific RNA-protein interactions that direct transcript-selective translational control. In myeloid cells, interferon (IFN)-gamma induces formation of the heterotetrameric, IFN-gamma-activated inhibitor of translation (GAIT) complex comprising glutamyl-prolyl tRNA synthetase (EPRS), NS1-associated protein 1 (NSAP1), ribosomal protein L13a and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This complex binds defined 3' untranslated region elements within a family of inflammatory mRNAs and suppresses their translation. IFN-gamma-dependent phosphorylation, and consequent release of EPRS and L13a from the tRNA multisynthetase complex and 60S ribosomal subunit, respectively, regulates GAIT complex assembly. EPRS recognizes and binds target mRNAs, NSAP1 negatively regulates RNA binding, and L13a inhibits translation initiation by binding eukaryotic initiation factor 4G. Repression of a post-transcriptional regulon by the GAIT system might contribute to the resolution of chronic inflammation.


Assuntos
Inflamação/genética , Interferon gama/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Animais , Fator de Iniciação Eucariótico 4G/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , MicroRNAs/metabolismo , Células Mieloides/metabolismo , Proteínas Ribossômicas/metabolismo
20.
EMBO J ; 28(3): 213-22, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19131968

RESUMO

MicroRNAs (miRNAs) repress target genes through a poorly defined antisense mechanism. Cell-free and cell-based assays have supported the idea that miRNAs repress their target mRNAs by blocking initiation of translation, whereas studies in animal models argued against this possibility. We examined endogenous targets of the let-7 miRNA, an important regulator of stem cell fates. We report that let-7 represses translation initiation in Caenorhabditis elegans, demonstrating this mode of action for the first time in an organism. Unexpectedly, although the lin-4 miRNA was previously reported to repress its targets at a step downstream of translation initiation, we also observe repression of translation initiation for this miRNA. This repressive mechanism, which frequently but not always coincides with transcript degradation, requires the GW182 proteins AIN-1 and AIN-2, and acts on several mRNAs targeted by different miRNAs. Our analysis of an expanded set of endogenous miRNA targets therefore indicates widespread repression of translation initiation under physiological conditions and establishes C. elegans as a genetic system for dissection of the underlying mechanisms.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , MicroRNAs/metabolismo , Biossíntese de Proteínas , Proteínas Repressoras/metabolismo , Regiões 3' não Traduzidas/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Genes de Helmintos , MicroRNAs/genética , Estabilidade de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA