RESUMO
Retroviruses are genome invaders that have shared a long history of coevolution with vertebrates and their immune system. Found endogenously in genomes as traces of past invasions, retroviruses are also considerable threats to human health when they exist as exogenous viruses such as HIV. The immune response to retroviruses is engaged by germline-encoded sensors of innate immunity that recognize viral components and damage induced by the infection. This response develops with the induction of antiviral effectors and launching of the clonal adaptive immune response, which can contribute to protective immunity. However, retroviruses efficiently evade the immune response, owing to their rapid evolution. The failure of specialized immune cells to respond, a form of neglect, may also contribute to inadequate antiretroviral immune responses. Here, we discuss the mechanisms by which immune responses to retroviruses are mounted at the molecular, cellular, and organismal levels. We also discuss how intrinsic, innate, and adaptive immunity may cooperate or conflict during the generation of immune responses.
Assuntos
Interações Hospedeiro-Patógeno/imunologia , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia , Retroviridae/imunologia , Imunidade Adaptativa , Animais , Humanos , Evasão da Resposta Imune , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade Inata , Infecções por Retroviridae/metabolismoRESUMO
Apolipoprotein B mRNA editing enzyme catalytic subunit 3 (APOBEC3) proteins are critical for the control of infection by retroviruses. These proteins deaminate cytidines in negative-strand DNA during reverse transcription, leading to G-to-A changes in coding strands. Uracil DNA glycosylase (UNG) is a host enzyme that excises uracils in genomic DNA, which the base excision repair machinery then repairs. Whether UNG removes uracils found in retroviral DNA after APOBEC3-mediated mutation is not clear, and whether this occurs in vivo has not been demonstrated. To determine if UNG plays a role in the repair of retroviral DNA, we used APOBEC3G (A3G) transgenic mice which we showed previously had extensive deamination of murine leukemia virus (MLV) proviruses. The A3G transgene was crossed onto an Ung and mouse Apobec3 knockout background (UNG-/-APO-/-), and the mice were infected with MLV. We found that virus infection levels were decreased in A3G UNG-/-APO-/- compared with A3G APO-/- mice. Deep sequencing of the proviruses showed that there were significantly higher levels of G-to-A mutations in proviral DNA from A3G transgenic UNG-/-APO-/- than A3G transgenic APO-/- mice, suggesting that UNG plays a role in the repair of uracil-containing proviruses. In in vitro studies, we found that cytoplasmic viral DNA deaminated by APOBEC3G was uracilated. In the absence of UNG, the uracil-containing proviruses integrated at higher levels into the genome than those made in the presence of UNG. Thus, UNG also functions in the nucleus prior to integration by nicking uracil-containing viral DNA, thereby blocking integration. These data show that UNG plays a critical role in the repair of the damage inflicted by APOBEC3 deamination of reverse-transcribed DNA. IMPORTANCE While APOBEC3-mediated mutation of retroviruses is well-established, what role the host base excision repair enzymes play in correcting these mutations is not clear. This question is especially difficult to address in vivo. Here, we use a transgenic mouse developed by our lab that expresses human APOBEC3G and also lacks the endogenous uracil DNA glycosylase (Ung) gene and show that UNG removes uracils introduced by this cytidine deaminase in MLV reverse transcripts, thereby reducing G-to-A mutations in proviruses. Furthermore, our data suggest that UNG removes uracils at two stages in infection-first, in unintegrated nuclear viral reverse-transcribed DNA, resulting in its degradation; and second, in integrated proviruses, resulting in their repair. These data suggest that retroviruses damaged by host cytidine deaminases take advantage of the host DNA repair system to overcome this damage.
Assuntos
Desaminase APOBEC-3G/imunologia , DNA Viral/imunologia , Infecções por Retroviridae , Retroviridae , Uracila-DNA Glicosidase/imunologia , Animais , Reparo do DNA , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Células NIH 3T3 , Retroviridae/genética , Retroviridae/imunologia , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologiaRESUMO
Koala populations are currently declining and under threat from koala retrovirus (KoRV) infection both in the wild and in captivity. KoRV is assumed to cause immunosuppression and neoplastic diseases, favoring chlamydiosis in koalas. Currently, 10 KoRV subtypes have been identified, including an endogenous subtype (KoRV-A) and nine exogenous subtypes (KoRV-B to KoRV-J). The host's immune response acts as a safeguard against pathogens. Therefore, a proper understanding of the immune response mechanisms against infection is of great importance for the host's survival, as well as for the development of therapeutic and prophylactic interventions. A vaccine is an important protective as well as being a therapeutic tool against infectious disease, and several studies have shown promise for the development of an effective vaccine against KoRV. Moreover, CRISPR/Cas9-based genome editing has opened a new window for gene therapy, and it appears to be a potential therapeutic tool in many viral infections, which could also be investigated for the treatment of KoRV infection. Here, we discuss the recent advances made in the understanding of the immune response in KoRV infection, as well as the progress towards vaccine development against KoRV infection in koalas.
Assuntos
Citocinas/imunologia , Phascolarctidae/virologia , Infecções por Retroviridae/prevenção & controle , Retroviridae/imunologia , Receptores Toll-Like/imunologia , Vacinação/métodos , Animais , Citocinas/metabolismo , Phascolarctidae/imunologia , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia , Receptores Toll-Like/metabolismoRESUMO
Viruses, including retroviruses, can be passed from mothers to their progeny during birth and breastfeeding. It is assumed that newborns may develop immune tolerance to milk-transmitted pathogens similarly to food antigens. I/LnJ mice are uniquely resistant to retroviruses acquired as newborns or as adults as they produce virus-neutralizing antibodies (Abs). A loss-of-function allele of H2-Ob (Ob), originally mapped within the virus infectivity controller 1 (vic1) locus, is responsible for production of antiretrovirus Abs in I/LnJ mice. Importantly, Ob-deficient and vic1 I/LnJ congenic mice on other genetic backgrounds produce antivirus Abs when infected as adults, but not as newborns. We report here that I/LnJ mice carry an additional genetic locus, virus infectivity controller 2 (vic2), that abrogates neonatal immune tolerance to retroviruses. Further genetic analysis mapped the vic2 locus to the telomeric end of chromosome 15. Identification of the vic2 gene and understanding of the related signaling pathways would make blocking of neonatal immune tolerance to retroviruses an achievable goal.IMPORTANCE This work describes a previously unknown genetic mechanism that allows neonates to respond to infections as efficiently as adults.
Assuntos
Tolerância Imunológica/genética , Infecções por Retroviridae/imunologia , Retroviridae/imunologia , Animais , Anticorpos Neutralizantes , Mapeamento Cromossômico , Feminino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Infecções por Retroviridae/virologiaRESUMO
Mammalian genes and genomes have been shaped by ancient and ongoing challenges from viruses. These genetic imprints can be identified via evolutionary analyses to reveal fundamental details about when (how old), where (which protein domains), and how (what are the functional consequences of adaptive changes) host-virus arms races alter the proteins involved. Just as extreme amino acid conservation can serve to identify key immutable residues in enzymes, positively selected residues point to molecular recognition interfaces between host and viral proteins that have adapted and counter-adapted in a long series of classical Red Queen conflicts. Common rules for the strategies employed by both hosts and viruses have emerged from case studies of innate immunity genes in primates. We are now poised to use these rules to transition from a retrospective view of host-virus arms races to specific predictions about which host genes face pathogen antagonism and how those genetic conflicts transform host and virus evolution.
Assuntos
Evolução Molecular , Interações Hospedeiro-Patógeno , Desaminases APOBEC , Imunidade Adaptativa , Animais , Fatores de Restrição Antivirais , Proteínas de Transporte/genética , Citidina Desaminase , Citosina Desaminase/genética , Epistasia Genética , Humanos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteólise , Retroviridae/genética , Retroviridae/imunologia , Retroviridae/patogenicidade , Infecções por Retroviridae/genética , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia , Proteína 1 com Domínio SAM e Domínio HD , Seleção Genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Adenovirus (AdV)-based vectors are popular experimental vaccine vectors, but despite their ability to induce strong immune responses, their application is impeded by widespread preexisting immunity against many AdV types that can impair or even abrogate the induction of transgene-specific immune responses. Therefore, the development of vectors based on AdV types with a low seroprevalence is important for effective AdV-based immunization in humans. We investigated the immunization efficacy of vectors based on AdV type 48 (Ad48) and Ad50 in the ovalbumin (ova) model as well as the Friend retrovirus (FV) model, which allows testing of the protective effect of vaccine-induced immunity. Using ova-encoding vectors, we found a significantly lower induction of ova-specific CD8+ T cells and antibody responses by Ad48- and Ad50-based vectors than by Ad5-based vectors. Similarly, we found a reduced induction of FV-specific CD8+ T cell responses in Ad48- and Ad50.Leader-Gag-immunized mice compared with that in Ad5-immunized mice; however, some of those mice were able to control the FV infection, and protection correlated with the level of neutralizing antibodies 10 days after FV challenge. Analyses of the AdV-specific antibodies and CD8+ T cells induced by the individual AdV types revealed a high level of cross-reactivity, and the efficacy of Ad48-based immunization was impaired in Ad5-preimmune mice. Our results show that the immunity induced by Ad48- and Ad50-based vectors is reduced compared to that induced by Ad5 and is sufficient to control FV infection in only some of the immunized mice. A high level of cross-reactivity suggests that AdV preimmunity must be considered even when applying rare AdV-based vectors.IMPORTANCE AdV-based vectors are important tools for the development of vaccines against a wide range of pathogens. While AdV vectors are generally considered safe and highly effective, their application can be severely impaired by preexisting immunity due to the widespread seroprevalence of some AdV types. The characterization of different AdV types with regard to immunogenicity and efficacy in challenge models is of great importance for the development of improved AdV-based vectors that allow for efficient immunization despite anti-AdV immunity. We show that the immunity induced by an Ad48-based vector is inferior to that induced by an Ad5-based vector but can still mediate the control of an FV infection in highly FV-susceptible mice. However, the efficacy of Ad48-based immunization was impaired in Ad5-preimmune mice. Importantly, we found cross-reactivity of both the humoral and cellular immune responses raised by the individual AdV types, suggesting that switching to a different AdV type may not be sufficient to circumvent preexisting anti-AdV immunity.
Assuntos
Infecções por Adenoviridae/imunologia , Adenoviridae/classificação , Adenoviridae/imunologia , Vacinas contra Adenovirus/administração & dosagem , Anticorpos Antivirais/imunologia , Imunidade Celular/imunologia , Infecções por Retroviridae/imunologia , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/virologia , Vacinas contra Adenovirus/imunologia , Animais , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Feminino , Vetores Genéticos/administração & dosagem , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Retroviridae/imunologia , Infecções por Retroviridae/prevenção & controle , Infecções por Retroviridae/virologiaRESUMO
Tight regulation of immune responses is not only critical for preventing autoimmune diseases but also for preventing immunopathological damage during infections in which overactive immune responses may be more harmful for the host than the pathogen itself. Regulatory T cells (Tregs) play a critical role in this regulation, which was discovered using the Friend retrovirus (FV) mouse model. Subsequent FV studies revealed basic biological information about Tregs, including their suppressive activity on effector cells as well as the molecular mechanisms of virus-induced Treg expansion. Treg suppression not only limits immunopathology but also prevents complete elimination of pathogens contributing to chronic infections. Therefore, Tregs play a complex role in the pathogenesis of persistent retroviral infections. New therapeutic concepts to reactivate effector T-cell responses in chronic viral infections by manipulating Tregs also came from work with the FV model. This knowledge initiated many studies to characterize the role of Tregs in HIV pathogenesis in humans, where a complex picture is emerging. On one hand, Tregs suppress HIV-specific effector T-cell responses and are themselves targets of infection, but on the other hand, Tregs suppress HIV-induced immune hyperactivation and thus slow the infection of conventional CD4+ T cells and limit immunopathology. In this review, the basic findings from the FV mouse model are put into perspective with clinical and basic research from HIV studies. In addition, the few Treg studies performed in the simian immunodeficiency virus (SIV) monkey model will also be discussed. The review provides a comprehensive picture of the diverse role of Tregs in different retroviral infections and possible therapeutic approaches to treat retroviral chronicity and pathogenesis by manipulating Treg responses.
Assuntos
Interações Hospedeiro-Patógeno , Modelos Imunológicos , Infecções por Retroviridae/imunologia , Retroviridae/imunologia , Linfócitos T Reguladores/imunologia , Animais , Humanos , Tolerância Imunológica , Terapia de Imunossupressão , Linfopoese , Retroviridae/fisiologia , Infecções por Retroviridae/patologia , Infecções por Retroviridae/terapia , Infecções por Retroviridae/virologia , Linfócitos T Reguladores/patologia , Linfócitos T Reguladores/virologiaRESUMO
The mechanisms that contribute to retinal tissue destruction during the onset and progression of AIDS-related human cytomegalovirus (HCMV) retinitis remain unclear. Evidence for the stimulation of multiple cell death pathways including apoptosis, necroptosis, and pyroptosis during the pathogenesis of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunosuppression (MAIDS) has been reported. Parthanatos is a caspase-independent cell death pathway mediated by rapid overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) and distinct from other cell death pathways. Using the MAIDS model of MCMV retinitis, studies were performed to test the hypothesis that intraocular MCMV infection of mice with MAIDS stimulates parthanatos-associated messenger RNAs (mRNAs) and proteins within the eye during the development of retinal necrosis that takes place by 10 days after MCMV infection. MCMV-infected eyes of MAIDS mice exhibited significant stimulation of PARP-1 mRNA and proteins at 3 days after infection but declined thereafter at 6 and 10 days after infection. Additional studies showed the intraocular stimulation of mRNAs or proteins before MCMV retinitis development for two additional participants in parthanatos, polymer of ADP-ribose and poly (ADP-ribose) glycohydrolase. These results provide new evidence for a role for parthanatos during MAIDS-related MCMV retinitis that may also extend to AIDS-related HCMV retinitis.
Assuntos
Retinite por Citomegalovirus/metabolismo , Síndrome de Imunodeficiência Adquirida Murina/metabolismo , Síndrome de Imunodeficiência Adquirida Murina/virologia , Parthanatos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Morte Celular , Retinite por Citomegalovirus/complicações , Modelos Animais de Doenças , Progressão da Doença , Feminino , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Síndrome de Imunodeficiência Adquirida Murina/complicações , Muromegalovirus , Poli(ADP-Ribose) Polimerase-1/genética , Poli Adenosina Difosfato Ribose/genética , Poli Adenosina Difosfato Ribose/metabolismo , RNA Mensageiro/metabolismo , Retina/patologia , Retina/virologia , Retroviridae/imunologiaRESUMO
Koala retrovirus (KoRV) is believed to be in an active state of endogenization into the koala genome. KoRV is present as both an endogenous and exogenous infection in all koalas in northern Australia. KoRV has been linked to koala pathologies including neoplasia and increased susceptibility to Chlamydia. A KoRV vaccine recently trialled in 10 northern koalas improved antibody response and reduced viral load. This communication reports the expression of key immune genes underlining the innate and adaptive immune response to vaccination in these northern koalas. The results showed that prior to vaccination, IL-8 was expressed at the highest levels, with at least 200-fold greater expression compared to other cytokines, while CD8 mRNA expression was significantly higher than CD4 mRNA expression level. Interferon-γ was up-regulated at both 4- and 8-weeks post-vaccination while IL-8 was down-regulated at 8-weeks post-vaccination.
Assuntos
Citocinas/genética , Interferon gama/genética , Phascolarctidae/virologia , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/veterinária , Retroviridae/imunologia , Vacinas Virais/imunologia , Animais , Formação de Anticorpos , Austrália , Estudos de Coortes , Citocinas/imunologia , Retrovirus Endógenos/genética , Retrovirus Endógenos/imunologia , Interferon gama/biossíntese , Interferon gama/imunologia , Phascolarctidae/imunologia , Retroviridae/genética , Infecções por Retroviridae/prevenção & controle , Regulação para Cima , Vacinas Virais/administração & dosagemRESUMO
In the last 20 years research in Immunology underwent fundamental changes. Most importantly, the identification of the key role of innate immune pattern recognition receptors (PRRs) that recognize evolutionarily conserved molecular patterns on infectious pathogens. This results in priming of innate immune cells, which in turn activate and direct the adaptive immune response. Progress in innate immune recognition instigated the current working hypothesis, that recognition of endogenous ligands by PRRs results in innate immune cell activation (autoinflammation) or activation of adaptive cells, with self-reactive antigen receptors (autoimmunity). In particular, nucleic acid-sensing innate immune receptors seem to be prime candidates for a mechanistic understanding of autoreactive activation of the immune system. However, it remains uncertain what the actual source of nucleic acid ligands is and what other signals are needed to drive activation of autoreactive innate immune cells and break self-tolerance of the adaptive immune system. Here, I will review our present understanding about whether the infection with exogenous retroviruses or the reactivation of endogenous retroviruses might play an etiological role in certain autoimmune conditions of humans and murine experimental models.
Assuntos
Doenças Autoimunes/imunologia , Infecções por Retroviridae/imunologia , Retroviridae/imunologia , Animais , Doenças Autoimunes/etiologia , Autoimunidade , Modelos Animais de Doenças , Humanos , Tolerância Imunológica , Camundongos , Ácidos Nucleicos/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Infecções por Retroviridae/complicações , Ativação ViralRESUMO
Acute myeloid leukaemia (AML) is a lethal haematological malignancy characterized by an immunosuppressive milieu in the tumour microenvironment (TME) that fosters disease growth and therapeutic resistance. Hypomethylating agents (HMAs) demonstrate clinical efficacy in AML patients and exert immunomodulatory activities. In the present study, we show that guadecitabine augments both antigen processing and presentation, resulting in increased AML susceptibility to T cell-mediated killing. Exposure to HMA results in the activation of the endogenous retroviral pathway with concomitant downstream amplification of critical mediators of inflammation. In an immunocompetent murine leukaemia model, guadecitabine negatively regulates inhibitory accessory cells in the TME by decreasing PD-1 (also termed PDCD1) expressing T cells and reducing AML-mediated expansion of myeloid-derived suppressor cells. Therapy with guadecitabine results in enhanced leukaemia-specific immunity, as manifested by increased CD4 and CD8 cells targeting syngeneic leukaemia cells. We have previously reported that vaccination with AML/dendritic cell fusions elicits the expansion of leukaemia-specific T cells and protects against disease relapse. In the present study, we demonstrate that vaccination in conjunction with HMA therapy results in enhanced anti-leukaemia immunity and survival. The combination of a novel personalized dendritic cell/AML fusion vaccine and an HMA has therapeutic potential, and a clinical trial investigating this combination is planned.
Assuntos
Antineoplásicos Imunológicos/farmacologia , Azacitidina/análogos & derivados , Vacinas Anticâncer/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Microambiente Tumoral/imunologia , Animais , Antineoplásicos Imunológicos/imunologia , Azacitidina/imunologia , Azacitidina/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Humanos , Imunidade Celular/efeitos dos fármacos , Leucemia Mieloide Aguda/imunologia , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Receptor de Morte Celular Programada 1/metabolismo , Retroviridae/imunologia , Ativação Viral/imunologiaRESUMO
Restriction factors are important components of intrinsic cellular defense mechanisms against viral pathogens. TRIM5α is a restriction factor that intercepts the incoming capsid cores of retroviruses such as HIV and provides an effective species-specific barrier to retroviral infection. The TRIM5α SPRY domain directly binds the capsid with only very weak, millimolar-level affinity, and productive capsid recognition therefore requires both TRIM5α dimerization and assembly of the dimers into a multivalent hexagonal lattice to promote avid binding. Here, we explore the important unresolved question of whether the SPRY domains are flexibly linked to the TRIM lattice or more precisely positioned to maximize avidity. Biochemical and biophysical experiments indicate that the linker segment connecting the SPRY domain to the coiled-coil domain adopts an α-helical fold, and that this helical portion mediates interactions between the two domains. Targeted mutations were generated to disrupt the putative packing interface without affecting dimerization or higher-order assembly, and we identified mutant proteins that were nevertheless deficient in capsid binding in vitro and restriction activity in cells. Our studies therefore support a model wherein substantial avidity gains during assembly-mediated capsid recognition by TRIM5α come in part from tailored spacing of tethered recognition domains.
Assuntos
Capsídeo/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Retroviridae/imunologia , Animais , Fatores de Restrição Antivirais , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Proteínas com Motivo Tripartido , Ubiquitina-Proteína LigasesRESUMO
UBXN proteins likely participate in the global regulation of protein turnover, and we have shown that UBXN1 interferes with RIG-I-like receptor (RLR) signaling by interacting with MAVS and impeding its downstream effector functions. Here we demonstrate that over-expression of multiple UBXN family members decreased lentivirus and retrovirus production by several orders-of-magnitude in single cycle assays, at the level of long terminal repeat-driven transcription, and three family members, UBXN1, N9, and N11 blocked the canonical NFκB pathway by binding to Cullin1 (Cul1), inhibiting IκBα degradation. Multiple regions of UBXN1, including its UBA domain, were critical for its activity. Elimination of UBXN1 resulted in early murine embryonic lethality. shRNA-mediated knockdown of UBXN1 enhanced human immunodeficiency virus type 1 (HIV) production up to 10-fold in single cycle assays. In primary human fibroblasts, knockdown of UBXN1 caused prolonged degradation of IκBα and enhanced NFκB signaling, which was also observed after CRISPR-mediated knockout of UBXN1 in mouse embryo fibroblasts. Knockout of UBXN1 significantly up- and down-regulated hundreds of genes, notably those of several cell adhesion and immune signaling pathways. Reduction in UBXN1 gene expression in Jurkat T cells latently infected with HIV resulted in enhanced HIV gene expression, consistent with the role of UBXN1 in modulating the NFκB pathway. Based upon co-immunoprecipitation studies with host factors known to bind Cul1, models are presented as to how UBXN1 could be inhibiting Cul1 activity. The ability of UBXN1 and other family members to negatively regulate the NFκB pathway may be important for dampening the host immune response in disease processes and also re-activating quiescent HIV from latent viral reservoirs in chronically infected individuals.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Infecções por HIV/imunologia , Transdução de Sinais/imunologia , Animais , Técnicas de Inativação de Genes , HIV-1/imunologia , Humanos , Imunoprecipitação , Células Jurkat , Lentivirus/imunologia , Camundongos , Camundongos Knockout , Microscopia Confocal , Inibidor de NF-kappaB alfa/imunologia , NF-kappa B/imunologia , Retroviridae/imunologiaRESUMO
Adenovirus (Ad)-based immunization is a popular approach in vaccine development, and Ad-based vectors are renowned for their potential to induce strong CD8+ T cell responses to the encoded transgene. Surprisingly, we previously found in the mouse Friend retrovirus (FV) model that Ad-based immunization did not induce CD8+ T cell responses to the FV Leader-Gag-derived immunodominant epitope GagL85-93 We show now that induction of GagL85-93-specific CD8+ T cells was highly effective when leader-Gag was delivered by plasmid DNA immunization, implying a role for Ad-derived epitopes in mediating unresponsiveness. By immunizing with DNA constructs encoding strings of GagL85-93 and the two Ad-derived epitopes DNA-binding protein418-426 (DBP418-426) and hexon486-494, we confirmed that Ad epitopes prevent induction of GagL85-93-specific CD8+ T cells. Interestingly, while DBP418-426 did not interfere with GagL85-93-specific CD8+ T cell induction, the H-2Dd-restricted hexon486-494 suppressed the CD8+ T cell response to the H-2Db-restricted GagL85-93 strongly in H-2b/d mice but not in H-2b/b mice. This finding indicates that competition occurs at the level of responding CD8+ T cells, and we could indeed demonstrate that coimmunization with an interleukin 2 (IL-2)-encoding plasmid restored GagL85-93-specific CD8+ T cell responses to epitope strings in the presence of hexon486-494 IL-2 codelivery did not restore GagL85-93 responsiveness in Ad-based immunization, however, likely due to the presence of further epitopes in the Ad vector. Our findings show that seemingly immunodominant transgene epitopes can be dominated by Ad-derived epitopes. These findings underline the importance of thorough characterization of vaccine vectors, and modifications of vectors or immunogens may be required to prevent impaired transgene-specific immune responses.IMPORTANCE Ad-based vectors are widely used in experimental preclinical and clinical immunization studies against numerous infectious agents, such as human immunodeficiency virus, Ebola virus, Plasmodium falciparum, or Mycobacterium tuberculosis Preexisting immunity to Ad-based vectors is widely recognized as a hindrance to the widespread use of Ad-based vectors for immunizations in humans; however, our data show that an immune response to Ad-derived T cell epitopes can also result in loss or impairment of transgene-specific immune responses in prenaive vaccinees due to immune competition. Our results highlight that seemingly immunodominant epitopes may be affected by dominance of vector-derived epitopes, and modifications of the vector design or the immunogens employed in immunization may lead to more effective vaccines.
Assuntos
Adenoviridae/genética , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Epitopos Imunodominantes/imunologia , Transgenes , Adenoviridae/imunologia , Vacinas contra Adenovirus/imunologia , Animais , Linfócitos T CD8-Positivos/química , Vírus da Leucemia Murina de Friend/genética , Vírus da Leucemia Murina de Friend/imunologia , Vetores Genéticos , Imunização , Interleucina-2/administração & dosagem , Interleucina-2/genética , Interleucina-2/imunologia , Ativação Linfocitária , Camundongos , Retroviridae/genética , Retroviridae/imunologia , Vacinas de DNA/imunologiaRESUMO
Chimeric antigen receptors (CARs) are synthetic receptors that reprogram T lymphocytes to target chosen antigens. The targeting of CD19, a cell surface molecule expressed in the vast majority of leukemias and lymphomas, has been successfully translated in the clinic, earning CAR therapy a special distinction in the selection of "cancer immunotherapy" by Science as the breakthrough of the year in 2013. CD19 CAR therapy is predicated on advances in genetic engineering, T cell biology, tumor immunology, synthetic biology, target identification, cell manufacturing sciences, and regulatory compliance-the central tenets of CAR therapy. Here, we review two of these foundations: the genetic engineering approaches and cell types to engineer.
Assuntos
Antígenos CD19/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Leucemia/terapia , Linfoma/terapia , Proteínas Mutantes Quiméricas/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Antígenos CD19/imunologia , Engenharia Celular/métodos , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/imunologia , Humanos , Imunoterapia/métodos , Lentivirus/genética , Lentivirus/imunologia , Leucemia/genética , Leucemia/imunologia , Leucemia/patologia , Linfoma/genética , Linfoma/imunologia , Linfoma/patologia , Proteínas Mutantes Quiméricas/imunologia , Engenharia de Proteínas/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Retroviridae/genética , Retroviridae/imunologia , Linfócitos T/classificação , Linfócitos T/citologiaRESUMO
UNLABELLED: Molecular evolutionary arms races between viruses and their hosts are important drivers of adaptation. These Red Queen dynamics have been frequently observed in primate retroviruses and their antagonists, host restriction factor genes, such as APOBEC3F/G, TRIM5-α, SAMHD1, and BST-2. Host restriction factors have experienced some of the most intense and pervasive adaptive evolution documented in primates. Recently, two novel host factors, SERINC3 and SERINC5, were identified as the targets of HIV-1 Nef, a protein crucial for the optimal infectivity of virus particles. Here, we compared the evolutionary fingerprints of SERINC3 and SERINC5 to those of other primate restriction factors and to a set of other genes with diverse functions. SERINC genes evolved in a manner distinct from the canonical arms race dynamics seen in the other restriction factors. Despite their antiviral activity against HIV-1 and other retroviruses, SERINC3 and SERINC5 have a relatively uneventful evolutionary history in primates. IMPORTANCE: Restriction factors are host proteins that block viral infection and replication. Many viruses, like HIV-1 and related retroviruses, evolved accessory proteins to counteract these restriction factors. The importance of these interactions is evidenced by the intense adaptive selection pressures that dominate the evolutionary histories of both the host and viral genes involved in this so-called arms race. The dynamics of these arms races can point to mechanisms by which these viral infections can be prevented. Two human genes, SERINC3 and SERINC5, were recently identified as targets of an HIV-1 accessory protein important for viral infectivity. Unexpectedly, we found that these SERINC genes, unlike other host restriction factor genes, show no evidence of a recent evolutionary arms race with viral pathogens.
Assuntos
Evolução Molecular , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Receptores de Superfície Celular/genética , Receptores Imunológicos/genética , Retroviridae/imunologia , Animais , Humanos , Glicoproteínas de Membrana , PrimatasRESUMO
UNLABELLED: Host restriction factor TRIM5 inhibits retroviral transduction in a species-specific manner by binding to and destabilizing the retroviral capsid lattice before reverse transcription is completed. However, the restriction mechanism may not be that simple since TRIM5 E3 ubiquitin ligase activity, the proteasome, autophagy, and TAK1-dependent AP-1 signaling have been suggested to contribute to restriction. Here, we show that, among a panel of seven primate and Carnivora TRIM5 orthologues, each of which has potential for potent retroviral restriction activity, all activated AP-1 signaling. In contrast, TRIM family paralogues most closely related to TRIM5 did not. While each primate species has a single TRIM5 gene, mice have at least seven TRIM5 homologues that cluster into two groups, Trim12a, -b, and -c and Trim30a, -b, -c, and -d. The three Trim12 proteins activated innate immune signaling, while the Trim30 proteins did not, though none of the murine Trim5 homologues restricted any of a panel of cloned retroviruses. To determine if any mouse TRIM5 homologues had potential for restriction activity, each was fused to the human immunodeficiency virus type 1 (HIV-1) CA binding protein cyclophilin A (CypA). The three Trim12-CypA fusions all activated AP-1 and restricted HIV-1 transduction, whereas the Trim30-CypA fusions did neither. AP-1 activation and HIV-1 restriction by the Trim12-CypA fusions were inhibited by disruption of TAK1. Overall then, these experiments demonstrate that there is a strong correlation between TRIM5 retroviral restriction activity and the ability to activate TAK1-dependent innate immune signaling. IMPORTANCE: The importance of retroviruses for the evolution of susceptible host organisms cannot be overestimated. Eight percent of the human genome is retrovirus sequence, fixed in the germ line during past infection. Understanding how metazoa protect their genomes from mutagenic retrovirus infection is therefore of fundamental importance to biology. TRIM5 is a cellular protein that protects host genome integrity by disrupting the retroviral capsid as it transports viral nucleic acid to the host cell nucleus. Previous data suggest that innate immune signaling contributes to TRIM5-mediated restriction. Here, we show that activation of innate immune signaling is conserved among primate and carnivore TRIM5 orthologues and among 3 of the 7 mouse Trim5 homologues and that such activity is required for TRIM5-mediated restriction activity.
Assuntos
Proteínas de Transporte/metabolismo , Imunidade Inata , Retroviridae/imunologia , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Animais , Gatos , Linhagem Celular , Humanos , Camundongos , Retroviridae/genética , Transdução GenéticaRESUMO
Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.
Assuntos
Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Evasão da Resposta Imune/imunologia , Infecções por Retroviridae/imunologia , Animais , Linfócitos T CD8-Positivos/virologia , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Retroviridae/imunologiaRESUMO
BACKGROUND: The function of p53 in cancer biology has been studied extensively, but its role in anti-retrovirus infection has been elusive for many years. The restriction of retrovirus early stage replication by p53 was investigated in this study. METHOD: VSV-G pseudotyped retrovirus with GFP reporter gene was used to infect both HCT116 p53+/+ cells and its isogenic p53 knockout HCT116 p53-/- cells. The infection was detected by flow cytometry. Reverse transcription products were quantified by real time PCR. Mutation analysis was performed after 1-LTR cycle and 2-LTR cycle DNA were amplified and PCR products were sequenced. Transcription and translation of cyclin-dependent kinase inhibitor 1 (p21Cip1) and SAM domain and HD domain-containing protein 1 (SAMHD1) were analyzed by TaqMan PCR and Western blot experiments. siRNA experiment was applied to study the role of p53 downstream gene p21Cip1 in the restriction of retrovirus infection. RESULTS: It was found that the block of retrovirus infection in non-cycling cells was significantly attenuated in HCT116 p53-/- cells when compared to HCT116 p53+/+ cells. It was found that both late reverse transcription products and viral 2-LTR cycle DNA were significantly increased in infected non-cycling HCT116 p53-/- cells. Furthermore, the mutation frequency detected in 1-LTR DNA from HCT116 p53+/+ cells were significantly decreased in comparison to HCT116 p53-/- cells. A higher number of insertion and deletion mutations were detected in the joint region of 2-LTR cycle DNA in infected p53+/+ cells. Cell cycle analysis showed retrovirus infection promoted host cell replication. Higher levels of mRNA and protein of p21Cip1 were found in HCT116 p53+/+ cells in comparison to the HCT116 p53-/- cells. Furthermore, knockdown of p21Cip1 in non-cycling HCT116 p53+/+ cells significantly increased the infection. CONCLUSIONS: The results of this study showed that p53 is an important restriction factor that interferes with retrovirus infection in its early stage of replication. Our results suggested that p53 mediates the inhibition of retrovirus infection in non-cycling cells through it downstream gene p21Cip1, and p53 also functions to influence formation of 1-LTR cycle and 2-LTR cycle DNA.
Assuntos
Interações Hospedeiro-Patógeno , Fatores Imunológicos/metabolismo , Retroviridae/imunologia , Retroviridae/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Replicação Viral , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Fatores Imunológicos/genética , Proteína Supressora de Tumor p53/genéticaRESUMO
TRIM5 is a RING domain-E3 ubiquitin ligase that restricts infection by human immunodeficiency virus (HIV)-1 and other retroviruses immediately following virus invasion of the target cell cytoplasm. Antiviral potency correlates with TRIM5 avidity for the retrovirion capsid lattice and several reports indicate that TRIM5 has a role in signal transduction, but the precise mechanism of restriction is unknown. Here we demonstrate that TRIM5 promotes innate immune signalling and that this activity is amplified by retroviral infection and interaction with the capsid lattice. Acting with the heterodimeric, ubiquitin-conjugating enzyme UBC13-UEV1A (also known as UBE2N-UBE2V1), TRIM5 catalyses the synthesis of unattached K63-linked ubiquitin chains that activate the TAK1 (also known as MAP3K7) kinase complex and stimulate AP-1 and NFκB signalling. Interaction with the HIV-1 capsid lattice greatly enhances the UBC13-UEV1A-dependent E3 activity of TRIM5 and challenge with retroviruses induces the transcription of AP-1 and NF-κB-dependent factors with a magnitude that tracks with TRIM5 avidity for the invading capsid. Finally, TAK1 and UBC13-UEV1A contribute to capsid-specific restriction by TRIM5. Thus, the retroviral restriction factor TRIM5 has two additional activities that are linked to restriction: it constitutively promotes innate immune signalling and it acts as a pattern recognition receptor specific for the retrovirus capsid lattice.