Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.019
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 167(2): 582-582.e1, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716511

RESUMO

The nitrogen-fixing Rhizobium-legume partnership is presently the best understood of all host-microbe symbioses. Bacterial and plant partners signal across developmental time and space.


Assuntos
Células Vegetais/microbiologia , Rhizobium/metabolismo , Transdução de Sinais , Simbiose
2.
Nature ; 630(8018): 899-904, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723661

RESUMO

Nitrogen (N2) fixation in oligotrophic surface waters is the main source of new nitrogen to the ocean1 and has a key role in fuelling the biological carbon pump2. Oceanic N2 fixation has been attributed almost exclusively to cyanobacteria, even though genes encoding nitrogenase, the enzyme that fixes N2 into ammonia, are widespread among marine bacteria and archaea3-5. Little is known about these non-cyanobacterial N2 fixers, and direct proof that they can fix nitrogen in the ocean has so far been lacking. Here we report the discovery of a non-cyanobacterial N2-fixing symbiont, 'Candidatus Tectiglobus diatomicola', which provides its diatom host with fixed nitrogen in return for photosynthetic carbon. The N2-fixing symbiont belongs to the order Rhizobiales and its association with a unicellular diatom expands the known hosts for this order beyond the well-known N2-fixing rhizobia-legume symbioses on land6. Our results show that the rhizobia-diatom symbioses can contribute as much fixed nitrogen as can cyanobacterial N2 fixers in the tropical North Atlantic, and that they might be responsible for N2 fixation in the vast regions of the ocean in which cyanobacteria are too rare to account for the measured rates.


Assuntos
Diatomáceas , Fixação de Nitrogênio , Nitrogênio , Oceanos e Mares , Rhizobium , Água do Mar , Simbiose , Carbono/metabolismo , Diatomáceas/metabolismo , Diatomáceas/fisiologia , Nitrogênio/metabolismo , Fotossíntese , Filogenia , Rhizobium/classificação , Rhizobium/metabolismo , Rhizobium/fisiologia , Água do Mar/microbiologia , Água do Mar/química , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Oceano Atlântico
3.
Annu Rev Microbiol ; 76: 45-65, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395168

RESUMO

To suppress plant immunity and promote the intracellular infection required for fixing nitrogen for the benefit of their legume hosts, many rhizobia use type III secretion systems (T3SSs) that deliver effector proteins (T3Es) inside host cells. As reported for interactions between pathogens and host plants, the immune system of legume hosts and the cocktail of T3Es secreted by rhizobia determine the symbiotic outcome. If they remain undetected, T3Es may reduce plant immunity and thus promote infection of legumes by rhizobia. If one or more of the secreted T3Es are recognized by the cognate plant receptors, defense responses are triggered and rhizobial infection may abort. However, some rhizobial T3Es can also circumvent the need for nodulation (Nod) factors to trigger nodule formation. Here we review the multifaceted roles played by rhizobial T3Es during symbiotic interactions with legumes.


Assuntos
Fabaceae , Rhizobium , Fabaceae/metabolismo , Imunidade Vegetal , Rhizobium/metabolismo , Simbiose/fisiologia , Sistemas de Secreção Tipo III/metabolismo
4.
Nature ; 589(7843): 586-590, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299183

RESUMO

Legumes, unlike other plants, have the ability to establish symbiosis with nitrogen-fixing rhizobia. It has been theorized that a unique property of legume root cortical cells enabled the initial establishment of rhizobial symbiosis1-3. Here we show that a SHORTROOT-SCARECROW (SHR-SCR) stem cell program in cortical cells of the legume Medicago truncatula specifies their distinct fate. Regulatory elements drive the cortical expression of SCR, and stele-expressed SHR protein accumulates in cortical cells of M. truncatula but not Arabidopsis thaliana. The cortical SHR-SCR network is conserved across legume species, responds to rhizobial signals, and initiates legume-specific cortical cell division for de novo nodule organogenesis and accommodation of rhizobia. Ectopic activation of SHR and SCR in legumes is sufficient to induce root cortical cell division. Our work suggests that acquisition of the cortical SHR-SCR module enabled cell division coupled to rhizobial infection in legumes. We propose that this event was central to the evolution of rhizobial endosymbiosis.


Assuntos
Diferenciação Celular , Linhagem da Célula , Medicago truncatula/citologia , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Nodulação , Arabidopsis/citologia , Arabidopsis/metabolismo , Divisão Celular , Citocininas/metabolismo , Evolução Molecular , Medicago truncatula/embriologia , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Rhizobium/metabolismo , Transdução de Sinais , Simbiose/genética
5.
Proc Natl Acad Sci U S A ; 121(13): e2311127121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507447

RESUMO

Microbiota comprise the bulk of life's diversity, yet we know little about how populations of microbes accumulate adaptive diversity across natural landscapes. Adaptation to stressful soil conditions in plants provides seminal examples of adaptation in response to natural selection via allelic substitution. For microbes symbiotic with plants however, horizontal gene transfer allows for adaptation via gene gain and loss, which could generate fundamentally different evolutionary dynamics. We use comparative genomics and genetics to elucidate the evolutionary mechanisms of adaptation to physiologically stressful serpentine soils in rhizobial bacteria in western North American grasslands. In vitro experiments demonstrate that the presence of a locus of major effect, the nre operon, is necessary and sufficient to confer adaptation to nickel, a heavy metal enriched to toxic levels in serpentine soil, and a major axis of environmental soil chemistry variation. We find discordance between inferred evolutionary histories of the core genome and nreAXY genes, which often reside in putative genomic islands. This suggests that the evolutionary history of this adaptive variant is marked by frequent losses, and/or gains via horizontal acquisition across divergent rhizobium clades. However, different nre alleles confer distinct levels of nickel resistance, suggesting allelic substitution could also play a role in rhizobium adaptation to serpentine soil. These results illustrate that the interplay between evolution via gene gain and loss and evolution via allelic substitution may underlie adaptation in wild soil microbiota. Both processes are important to consider for understanding adaptive diversity in microbes and improving stress-adapted microbial inocula for human use.


Assuntos
Metais Pesados , Rhizobium , Humanos , Rhizobium/genética , Níquel , Metais Pesados/toxicidade , Genômica , Solo
6.
PLoS Biol ; 21(5): e3002127, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200394

RESUMO

Receptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans. Expression studies with cellular resolution show localised activation of the Epr3a promoter in cortical root cells containing arbuscules. Fungal infection and intracellular arbuscule formation are reduced in epr3a mutants. In vitro, the EPR3a ectodomain binds cell wall glucans in affinity gel electrophoresis assays. In microscale thermophoresis (MST) assays, rhizobial exopolysaccharide binding is detected with affinities comparable to those observed for EPR3, and both EPR3a and EPR3 bind a well-defined ß-1,3/ß-1,6 decasaccharide derived from exopolysaccharides of endophytic and pathogenic fungi. Both EPR3a and EPR3 function in the intracellular accommodation of microbes. However, contrasting expression patterns and divergent ligand affinities result in distinct functions in AM colonisation and rhizobial infection in Lotus japonicus. The presence of Epr3a and Epr3 genes in both eudicot and monocot plant genomes suggest a conserved function of these receptor kinases in glycan perception.


Assuntos
Lotus , Micorrizas , Rhizobium , Micorrizas/genética , Lotus/genética , Lotus/metabolismo , Lotus/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Rhizobium/metabolismo , Raízes de Plantas/metabolismo , Mutação , Simbiose/genética , Fosfotransferases/metabolismo , Polissacarídeos/metabolismo , Glucanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
PLoS Genet ; 19(2): e1010621, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36735729

RESUMO

Symbiotic interactions between rhizobia and legumes result in the formation of root nodules, which fix nitrogen that can be used for plant growth. Rhizobia usually invade legume roots through a plant-made tunnel-like structure called an infection thread (IT). RPG (Rhizobium-directed polar growth) encodes a coiled-coil protein that has been identified in Medicago truncatula as required for root nodule infection, but the function of RPG remains poorly understood. In this study, we identified and characterized RPG in Lotus japonicus and determined that it is required for IT formation. RPG was induced by Mesorhizobium loti or purified Nodulation factor and displayed an infection-specific expression pattern. Nodule inception (NIN) bound to the RPG promoter and induced its expression. We showed that RPG displayed punctate subcellular localization in L. japonicus root protoplasts and in root hairs infected by M. loti. The N-terminal predicted C2 lipid-binding domain of RPG was not required for this subcellular localization or for function. CERBERUS, a U-box E3 ligase which is also required for rhizobial infection, was found to be localized similarly in puncta. RPG co-localized and directly interacted with CERBERUS in the early endosome (TGN/EE) compartment and near the nuclei in root hairs after rhizobial inoculation. Our study sheds light on an RPG-CERBERUS protein complex that is involved in an exocytotic pathway mediating IT elongation.


Assuntos
Lotus , Rhizobium , Rhizobium/genética , Lotus/genética , Lotus/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiose/genética , Regulação da Expressão Gênica de Plantas , Nódulos Radiculares de Plantas/genética , Raízes de Plantas
8.
Plant Physiol ; 194(3): 1611-1630, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38039119

RESUMO

Legumes establish symbiotic interactions with nitrogen-fixing rhizobia that are accommodated in root-derived organs known as nodules. Rhizobial recognition triggers a plant symbiotic signaling pathway that activates 2 coordinated processes: infection and nodule organogenesis. How these processes are orchestrated in legume species utilizing intercellular infection and lateral root base nodulation remains elusive. Here, we show that Aeschynomene evenia OROSOMUCOID PROTEIN 1 (AeORM1), a key regulator of sphingolipid biosynthesis, is required for nodule formation. Using A. evenia orm1 mutants, we demonstrate that alterations in AeORM1 function trigger numerous early aborted nodules, defense-like reactions, and shorter lateral roots. Accordingly, AeORM1 is expressed during lateral root initiation and elongation, including at lateral root bases where nodule primordium form in the presence of symbiotic bradyrhizobia. Sphingolipidomics revealed that mutations in AeORM1 lead to sphingolipid overaccumulation in roots relative to the wild type, particularly for very long-chain fatty acid-containing ceramides. Taken together, our findings reveal that AeORM1-regulated sphingolipid homeostasis is essential for rhizobial infection and nodule organogenesis, as well as for lateral root development in A. evenia.


Assuntos
Fabaceae , Rhizobium , Orosomucoide , Desenvolvimento Embrionário , Ceramidas , Homeostase
9.
Plant Cell ; 34(5): 1573-1599, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35157080

RESUMO

Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.


Assuntos
Fabaceae , Micorrizas , Rhizobium , Micorrizas/fisiologia , Fixação de Nitrogênio , Fosfatos , Plantas/microbiologia , Rhizobium/fisiologia , Simbiose/fisiologia
10.
Proc Natl Acad Sci U S A ; 119(47): e2206291119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375074

RESUMO

Legumes establish endosymbiotic associations with nitrogen-fixing rhizobia, which they host inside root nodules. Here, specific physiological and morphological adaptations, such as the production of oxygen-binding leghemoglobin proteins and the formation of an oxygen diffusion barrier in the nodule periphery, are essential to protect the oxygen-labile bacterial nitrogenase enzyme. The molecular basis of the latter process remains elusive as the identification of required genes is limited by the epistatic effect of nodule organogenesis over nodule infection and rhizobia accommodation. We overcame this by exploring the phenotypic diversity of Lotus japonicus accessions that uncouple nodule organogenesis from nodule infection when inoculated with a subcompatible Rhizobium strain. Using comparative transcriptomics, we identified genes with functions associated with oxygen homeostasis and deposition of lipid polyesters on cell walls to be specifically up-regulated in infected compared to noninfected nodules. As hydrophobic modification of cell walls is pivotal for creating diffusion barriers like the root endodermis, we focused on two Fatty acyl-CoA Reductase genes that were specifically activated in the root and/or in the nodule endodermis. Mutant lines in a Fatty acyl-CoA Reductase gene expressed exclusively in the nodule endodermis had decreased deposition of polyesters on this cell layer and increased nodule permeability compared to wild-type plants. Oxygen concentrations were significantly increased in the inner cortex of mutant nodules, which correlated with reduced nitrogenase activity, and impaired shoot growth. These results provide the first genetic evidence for the formation of the nodule oxygen diffusion barrier, a key adaptation enabling nitrogen fixation in legume nodules.


Assuntos
Lotus , Rhizobium , Lotus/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Oxigênio/metabolismo , Poliésteres , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/genética , Fixação de Nitrogênio/genética , Simbiose/genética , Nitrogenase/metabolismo , Lipídeos
11.
Proc Natl Acad Sci U S A ; 119(43): e2202606119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252014

RESUMO

The subcellular events occurring in cells of legume plants as they form transcellular symbiotic-infection structures have been compared with those occurring in premitotic cells. Here, we demonstrate that Aurora kinase 1 (AUR1), a highly conserved mitotic regulator, is required for intracellular infection by rhizobia in Medicago truncatula. AUR1 interacts with microtubule-associated proteins of the TPXL and MAP65 families, which, respectively, activate and are phosphorylated by AUR1, and localizes with them within preinfection structures. MYB3R1, a rhizobia-induced mitotic transcription factor, directly regulates AUR1 through two closely spaced, mitosis-specific activator cis elements. Our data are consistent with a model in which the MYB3R1-AUR1 regulatory module serves to properly orient preinfection structures to direct the transcellular deposition of cell wall material for the growing infection thread, analogous to its role in cell plate formation. Our findings indicate that the eukaryotically conserved MYB3R1-TPXL-AUR1-MAP65 mitotic module was conscripted to support endosymbiotic infection in legumes.


Assuntos
Aurora Quinases , Medicago truncatula , Proteínas de Plantas , Rhizobium , Simbiose , Aurora Quinases/genética , Aurora Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/microbiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/metabolismo , Fatores de Transcrição/metabolismo
12.
Plant J ; 116(1): 112-127, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37344994

RESUMO

Although vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium-legume symbiosis is unclear. In this study, homologous genes of VPT1 (MtVPTs) were identified in Medicago truncatula to assess their roles in Rhizobium-legume symbiosis and phosphorus adaptation. MtVPT2 and MtVPT3 mainly positively responded to low and high phosphate, respectively. However, both mtvpt2 and mtvpt3 mutants displayed shoot phenotypes with high phosphate sensitivity and low phosphate tolerance. The root-to-shoot phosphate transfer efficiency was significantly enhanced in mtvpt3 but weakened in mtvpt2, accompanied by lower and higher root cytosolic inorganic phosphate (Pi) concentration, respectively. Low phosphate induced MtVPT2 and MtVPT3 expressions in nodules. MtVPT2 and MtVPT3 mutations markedly reduced the nodule number and nitrogenase activity under different phosphate conditions. Cytosolic Pi concentration in nodules was significantly lower in mtvpt2 and mtvpt3 than in the wildtype, especially in tissues near the base of nodules, probably due to inhibition of long-distance Pi transport and cytosolic Pi supply. Also, mtvpt2 and mtvpt3 could not maintain a stable cytosolic Pi level in the nodule fixation zone as the wildtype under low phosphate stress. These findings show that MtVPT2 and MtVPT3 modulate phosphorus adaptation and rhizobia-legume symbiosis, possibly by regulating long-distance Pi transport.


Assuntos
Medicago truncatula , Rhizobium , Fósforo/metabolismo , Simbiose/genética , Nódulos Radiculares de Plantas/metabolismo , Rhizobium/fisiologia , Fosfatos/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Verduras/metabolismo , Fixação de Nitrogênio/genética
13.
Funct Integr Genomics ; 24(2): 47, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430379

RESUMO

Amino acid transporters (AATs) are essential integral membrane proteins that serve multiple roles, such as facilitating the transport of amino acids across cell membranes. They play a crucial role in the growth and development of plants. Phaseolus vulgaris, a significant legume crop, serves as a valuable model for studying root symbiosis. In this study, we have conducted an exploration of the AAT gene family in P. vulgaris. In this research, we identified 84 AAT genes within the P. vulgaris genome sequence and categorized them into 12 subfamilies based on their similarity and phylogenetic relationships with AATs found in Arabidopsis and rice. Interestingly, these AAT genes were not evenly distributed across the chromosomes of P. vulgaris . Instead, there was an unusual concentration of these genes located toward the outer edges of chromosomal arms. Upon conducting motif analysis and gene structural analysis, we observed a consistent presence of similar motifs and an intron-exon distribution pattern among the subfamilies. When we analyzed the expression profiles of PvAAT genes, we noted tissue-specific expression patterns. Furthermore, our investigation into AAT gene expression under rhizobial and mycorrhizal symbiotic conditions revealed that certain genes exhibited high levels of expression. Specifically, ATLa5 and LHT2 was notably upregulated under both symbiotic conditions. These findings point towards a potential role of AATs in the context of rhizobial and mycorrhizal symbiosis in P. vulgaris, in addition to their well-established regulatory functions.


Assuntos
Arabidopsis , Phaseolus , Rhizobium , Simbiose/genética , Phaseolus/genética , Filogenia , Sistemas de Transporte de Aminoácidos/genética , Membrana Celular
14.
Environ Microbiol ; 26(2): e16570, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216524

RESUMO

Motility and chemotaxis are crucial processes for soil bacteria and plant-microbe interactions. This applies to the symbiotic bacterium Rhizobium leguminosarum, where motility is driven by flagella rotation controlled by two chemotaxis systems, Che1 and Che2. The Che1 cluster is particularly important in free-living motility prior to the establishment of the symbiosis, with a che1 mutant delayed in nodulation and reduced in nodulation competitiveness. The Che2 system alters bacteroid development and nodule maturation. In this work, we also identified 27 putative chemoreceptors encoded in the R. leguminosarum bv. viciae 3841 genome and characterized its motility in different growth conditions. We describe a metabolism-based taxis system in rhizobia that acts at high concentrations of dicarboxylates to halt motility independent of chemotaxis. Finally, we show how PTSNtr influences cell motility, with PTSNtr mutants exhibiting reduced swimming in different media. Motility is restored by the active forms of the PTSNtr output regulatory proteins, unphosphorylated ManX and phosphorylated PtsN. Overall, this work shows how rhizobia typify soil bacteria by having a high number of chemoreceptors and highlights the importance of the motility and chemotaxis mechanisms in a free-living cell in the rhizosphere, and at different stages of the symbiosis.


Assuntos
Rhizobium leguminosarum , Rhizobium , Simbiose , Proteínas de Bactérias/metabolismo , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Solo
15.
Proc Biol Sci ; 291(2027): 20240765, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043241

RESUMO

Symbiotic nitrogen (N) fixation (SNF) by legumes and their rhizobial partners is one of the most important sources of bioavailable N to terrestrial ecosystems. While most work on the regulation of SNF has focussed on abiotic drivers such as light, water and soil nutrients, the diversity of rhizobia with which individual legume partners may play an important but under-recognized role in regulating N inputs from SNF. By experimentally manipulating the diversity of rhizobia available to legumes, we demonstrate that rhizobial diversity can increase average SNF rates by more than 90%, and that high rhizobial diversity can induce increased SNF even under conditions of high soil N fertilization. However, the effects of rhizobial diversity, the conditions under which diversity effects were the strongest, and the likely mechanisms driving these diversity effects differed between the two legume species we assessed. These results provide evidence that biodiversity-ecosystem function relationships can occur at the scales of an individual plant and that the effects of rhizobial diversity may be as important as long-established abiotic factors, such as N availability, in driving terrestrial N inputs via SNF.


Assuntos
Fixação de Nitrogênio , Nitrogênio , Rhizobium , Microbiologia do Solo , Solo , Simbiose , Solo/química , Nitrogênio/metabolismo , Rhizobium/fisiologia , Rhizobium/metabolismo , Fabaceae/microbiologia , Biodiversidade
16.
Planta ; 259(3): 69, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340188

RESUMO

MAIN CONCLUSION: The Na+/Ca2+ ratio of 1/5 ameliorated the inhibitory action of NaCl and improved the germination and growth of Vicia faba. Addition of Rhizobium also enhanced nodulation and nitrogen fixation. Casting light upon the impact of salinity stress on growth and nitrogen fixation of Vicia faba supplemented with Rhizobium has been traced in this work. How Ca2+ antagonizes Na+ toxicity and osmotic stress of NaCl was also targeted in isosmotic combinations of NaCl and CaCl2 having various Na+:Ca2+ ratios. Growth of Vicia faba (cultivar Giza 3) was studied at two stages: germination and seedling. At both experiments, seeds or seedlings were exposed to successively increasing salinity levels (0, 50, 100, 150, and 200 mM NaCl) as well as isosmotic combinations of NaCl and CaCl2 (Na+:Ca2+ of 1:1, 1:5, 1:10, 1:15, 1:18, and 1: 20), equivalent to 150 mM NaCl. Inocula of the local nitrogen-fixing bacteria, Rhizobium leguminosarum (OP715892) were supplemented at both stages. NaCl salinity exerted a negative impact on growth and metabolism of Vicia faba; inhibition was proportional with increasing salinity level up to the highest level of 200 mM. Seed germination, shoot and root lengths, fresh and dry weights, chlorophyll content, and nodules (number, weight, leghemoglobin, respiration, and nitrogenase activity) were inhibited by salinity. Ca2+ substitution for Na+, particularly at a Na/Ca ratio of 1:5, was stimulatory to almost all parameters at both stages. Statistical correlations between salinity levels and Na/Ca combinations proved one of the four levels (strong- or weak positive, strong- or weak negative) with most of the investigated parameters, depending on the parameter.


Assuntos
Rhizobium , Vicia faba , Vicia faba/metabolismo , Fixação de Nitrogênio , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Germinação , Cloreto de Cálcio/metabolismo , Sódio/metabolismo , Plântula
17.
Biochem Soc Trans ; 52(3): 1419-1430, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38779952

RESUMO

Legumes house nitrogen-fixing endosymbiotic rhizobia in specialised polyploid cells within root nodules. This results in a mutualistic relationship whereby the plant host receives fixed nitrogen from the bacteria in exchange for dicarboxylic acids. This plant-microbe interaction requires the regulation of multiple metabolic and physiological processes in both the host and symbiont in order to achieve highly efficient symbiosis. Recent studies have showed that the success of symbiosis is influenced by the circadian clock of the plant host. Medicago and soybean plants with altered clock mechanisms showed compromised nodulation and reduced plant growth. Furthermore, transcriptomic analyses revealed that multiple genes with key roles in recruitment of rhizobia to plant roots, infection and nodule development were under circadian control, suggesting that appropriate timing of expression of these genes may be important for nodulation. There is also evidence for rhythmic gene expression of key nitrogen fixation genes in the rhizobium symbiont, and temporal coordination between nitrogen fixation in the bacterial symbiont and nitrogen assimilation in the plant host may be important for successful symbiosis. Understanding of how circadian regulation impacts on nodule establishment and function will identify key plant-rhizobial connections and regulators that could be targeted to increase the efficiency of this relationship.


Assuntos
Fabaceae , Regulação da Expressão Gênica de Plantas , Fixação de Nitrogênio , Rhizobium , Simbiose , Rhizobium/fisiologia , Rhizobium/metabolismo , Fabaceae/microbiologia , Fabaceae/metabolismo , Ritmo Circadiano/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Relógios Circadianos/fisiologia , Relógios Circadianos/genética
18.
Appl Environ Microbiol ; 90(3): e0185123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38426790

RESUMO

Symbiotic nitrogen fixation (SNF) by rhizobia is not only the main natural bionitrogen-source for organisms but also a green process leveraged to increase the fertility of soil for agricultural production. However, an insufficient understanding of the regulatory mechanism of SNF hinders its practical application. During SNF, nifA-fixA signaling is essential for the biosynthesis of nitrogenases and electron transfer chain proteins. In the present study, the TetR regulator NffT, whose mutation increased fixA expression, was discovered through a fixA-promoter-ß-glucuronidase fusion assay performed with Rhizobium johnstonii. Real-time quantitative PCR analysis showed that nffT deletion increased the expression of symbiotic genes including nifA and fixA in nifA-fixA signaling, and fixL, fixK, fnrN, and fixN9 in fixL-fixN signaling. nffT overexpression resulted in disordered nodules and reduced nitrogen-fixing efficiency. Electrophoretic mobility shift assays revealed that NffT directly regulated the transcription of RL0091-93, which encode an ATP-binding ABC transporter predicted to be involved in carbohydrate transport. Purified His-tagged NffT bound to a 68 bp DNA sequence located -32 to -99 bp upstream of RL0091-93 and NffT deletion significantly increased the expression of RL0091-93. nffT-promoter-ß-glucuronidase fusion assay indicated that nffT expression was regulated by the cobNTS genes and cobalamin. Mutations in cobNTS significantly decreased the expression of nffT, and cobalamin restored its expression. These results revealed that NffT affects nodule development and nitrogen-fixing reaction by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes and, thus, plays a pivotal regulatory role during symbiosis of R. johnstonii-Pisum sativum.IMPORTANCESymbiotic nitrogen fixation (SNF) by rhizobia is a green way to maintain soil fertility without causing environmental pollution or consuming chemical energy. A detailed understanding of the regulatory mechanism of this complex process is essential for promoting sustainable agriculture. In this study, we discovered the TetR-type regulator NffT, which suppressed the expression of fixA in Rhizobium johnstonii. Furthermore, NffT was confirmed to play pleiotropic roles in R. johnstonii-Pisum sativum symbiosis; specifically, it inhibited rhizobial growth, nodule differentiation, and nitrogen-fixing reactions. We revealed that NffT indirectly affected R. johnstonii-P. sativum symbiosis by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes. Furthermore, cobalamin, a chemical molecule, was reported for the first time to be involved in TetR-type protein transcription during symbiosis. Thus, NffT identification connects SNF regulation with genetic, metabolic, and chemical signals and provides new insights into the complex regulation of SNF, laying an experimental basis for the targeted construction of rhizobial strains with highly efficient nitrogen-fixing capacity.


Assuntos
Rhizobium , Rhizobium/genética , Rhizobium/metabolismo , Fixação de Nitrogênio/genética , Pisum sativum , Glucuronidase/metabolismo , Carboidratos , Nitrogênio/metabolismo , Solo , Vitamina B 12/metabolismo , Simbiose/genética
19.
BMC Microbiol ; 24(1): 261, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004720

RESUMO

BACKGROUND: The excessive application of chemical fertilizers in the cultivation of Astragalus mongholicus Bunge results in a reduction in the quality of the medicinal plant and compromises the sustainable productivity of the soil. PGPB inoculant is a hot topic in ecological agriculture research. In the cultivation of Astragalus mongholicus, the screened nitrogen-fixing bacteria can promote plant growth, however, whether it can promote the accumulation of main bioactive components remains unknown. In this study, mixed inoculants containing 5 strains of growth promoting bacteria (Rhizobium T16 , Sinorhizobium T21 , Bacillus J1 , Bacillus G4 and Arthrobacter J2) were used in the field experiment. The metabolic substances in the root tissues of Astragalus mongholicus were identified during the harvest period by non-targeted metabolomics method, and the differential metabolites between groups were identified by statistical analysis. Meanwhile, high-throughput sequencing was performed to analyze the changes of rhizosphere soil and endophytic microbial community structure after mixed microbial treatment. RESULTS: The results of non-targeted metabolism indicated a significant increase in the levels of 26 metabolites after treatment including 13 flavonoids, 3 saponins and 10 other components. The contents of three plant hormones (abscisic acid, salicylic acid and spermidine) also increased after treatment, which presumed to play an important role in regulating plant growth and metabolism. Studies on endosphere and rhizosphere bacterial communities showed that Rhzobiaceae, Micromonosporaceae, and Hypomicrobiaceae in endophytic, and Oxalobactereae in rhizosphere were significantly increased after treatment. These findings suggest their potential importance in plant growth promotion and secondary metabolism regulation. CONCLUSIONS: This finding provides a basis for developing nitrogen-fixing bacteria fertilizer and improving the ecological planting efficiency of Astragalus mongholicus.


Assuntos
Astrágalo , Microbiota , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Astrágalo/microbiologia , Astrágalo/metabolismo , Bactérias Fixadoras de Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/genética , Saponinas/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Metabolômica , Arthrobacter/metabolismo , Arthrobacter/genética , Endófitos/metabolismo , Endófitos/genética , Rhizobium/metabolismo
20.
New Phytol ; 241(4): 1813-1828, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062896

RESUMO

Nodulation begins with the initiation of infection threads (ITs) in root hairs. Though mutual recognition and early symbiotic signaling cascades in legumes are well understood, molecular mechanisms underlying bacterial infection processes and successive nodule organogenesis remain largely unexplored. We functionally investigated a novel pectate lyase enzyme, GmNPLa, and its transcriptional regulator GmPTF1a/b in soybean (Glycine max), where their regulatory roles in IT development and nodule formation were elucidated through investigation of gene expression patterns, bioinformatics analysis, biochemical verification of genetic interactions, and observation of phenotypic impacts in transgenic soybean plants. GmNPLa was specifically induced by rhizobium inoculation in root hairs. Manipulation of GmNPLa produced remarkable effects on IT and nodule formation. GmPTF1a/b displayed similar expression patterns as GmNPLa, and manipulation of GmPTF1a/b also severely influenced nodulation traits. LI soybeans with low nodulation phenotypes were nearly restored to HI nodulation level by complementation of GmNPLa and/or GmPTF1a. Further genetic and biochemical analysis demonstrated that GmPTF1a can bind to the E-box motif to activate transcription of GmNPLa, and thereby facilitate nodulation. Taken together, our findings potentially reveal novel mediation of cell wall gene expression involving the basic helix-loop-helix transcription factor GmPTF1a/b acts as a key early regulator of nodulation in soybean.


Assuntos
Glycine max , Rhizobium , Glycine max/genética , Nodulação/fisiologia , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Fenótipo , Regulação da Expressão Gênica de Plantas , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA