RESUMO
OBJECTIVE: Long QT syndrome type 7 (Andersen-Tawil syndrome, ATS), which is caused by KCNJ2 gene mutation, often leads to ventricular arrhythmia, periodic paralysis and skeletal malformations. The development, differentiation and electrophysiological maturation of cardiomyocytes (CMs) changes promote the pathophysiology of Long QT syndrome type 7(LQT7). We aimed to specifically reproduce the ATS disease phenotype and study the pathogenic mechanism. METHODS AND RESULTS: We established a cardiac cell model derived from human induced pluripotent stem cells (hiPSCs) to the phenotypes and electrophysiological function, and the establishment of a human myocardial cell model that specifically reproduces the symptoms of ATS provides a reliable platform for exploring the mechanism of this disease or potential drugs. The spontaneous pulsation rate of myocardial cells in the mutation group was significantly lower than that in the repair CRISPR group, the action potential duration was prolonged, and the Kir2.1 current of the inward rectifier potassium ion channel was decreased, which is consistent with the clinical symptoms of ATS patients. Only ZNF528, a chromatin-accessible TF related to pathogenicity, was continuously regulated beginning from the cardiac mesodermal precursor cell stage (day 4), and continued to be expressed at low levels, which was identified by WGCNA method and verified with ATAC-seq data in the mutation group. Subsequently, it indicated that seven pathways were downregulated (all p < 0.05) by used single sample Gene Set Enrichment Analysis to evaluate the overall regulation of potassium-related pathways enriched in the transcriptome and proteome of late mature CMs. Among them, the three pathways (GO: 0008076, GO: 1990573 and GO: 0030007) containing the mutated gene KCNJ2 is involved that are related to the whole process by which a potassium ion enters the cell via the inward rectifier potassium channel to exert its effect were inhibited. The other four pathways are related to regulation of the potassium transmembrane pathway and sodium:potassium exchange ATPase (p < 0.05). ZNF528 small interfering (si)-RNA was applied to hiPSC-derived cardiomyocytes for CRISPR group to explore changes in potassium ion currents and growth and development related target protein levels that affect disease phenotype. Three consistently downregulated proteins (KCNJ2, CTTN and ATP1B1) associated with pathogenicity were verificated through correlation and intersection analysis. CONCLUSION: This study uncovers TFs and target proteins related to electrophysiology and developmental pathogenicity in ATS myocardial cells, obtaining novel targets for potential therapeutic candidate development that does not rely on gene editing.
Assuntos
Síndrome de Andersen , Células-Tronco Pluripotentes Induzidas , Humanos , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Cromatina/metabolismo , Transcriptoma , Mutação/genética , Miócitos Cardíacos/metabolismo , Potássio/metabolismoRESUMO
Andersen-Tawil syndrome is a neurological channelopathy caused by mutations in the KCNJ2 gene that encodes the ubiquitously expressed Kir2.1 potassium channel. The syndrome is characterized by episodic weakness, cardiac arrythmias and dysmorphic features. However, the full extent of the multisystem phenotype is not well described. In-depth, multisystem phenotyping is required to inform diagnosis and guide management. We report our findings following deep multimodal phenotyping across all systems in a large case series of 69 total patients, with comprehensive data for 52. As a national referral centre, we assessed point prevalence and showed it is higher than previously reported, at 0.105 per 100 000 population in England. While the classical phenotype of episodic weakness is recognized, we found that a quarter of our cohort have fixed myopathy and 13.5% required a wheelchair or gait aid. We identified frequent fat accumulation on MRI and tubular aggregates on muscle biopsy, emphasizing the active myopathic process underpinning the potential for severe neuromuscular disability. Long exercise testing was not reliable in predicting neuromuscular symptoms. A normal long exercise test was seen in five patients, of whom four had episodic weakness. Sixty-seven per cent of patients treated with acetazolamide reported a good neuromuscular response. Thirteen per cent of the cohort required cardiac defibrillator or pacemaker insertion. An additional 23% reported syncope. Baseline electrocardiograms were not helpful in stratifying cardiac risk, but Holter monitoring was. A subset of patients had no cardiac symptoms, but had abnormal Holter monitor recordings which prompted medication treatment. We describe the utility of loop recorders to guide management in two such asymptomatic patients. Micrognathia was the most commonly reported skeletal feature; however, 8% of patients did not have dysmorphic features and one-third of patients had only mild dysmorphic features. We describe novel phenotypic features including abnormal echocardiogram in nine patients, prominent pain, fatigue and fasciculations. Five patients exhibited executive dysfunction and slowed processing which may be linked to central expression of KCNJ2. We report eight new KCNJ2 variants with in vitro functional data. Our series illustrates that Andersen-Tawil syndrome is not benign. We report marked neuromuscular morbidity and cardiac risk with multisystem involvement. Our key recommendations include proactive genetic screening of all family members of a proband. This is required, given the risk of cardiac arrhythmias among asymptomatic individuals, and a significant subset of Andersen-Tawil syndrome patients have no (or few) dysmorphic features or negative long exercise test. We discuss recommendations for increased cardiac surveillance and neuropsychometry testing.
Assuntos
Síndrome de Andersen , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Síndrome de Andersen/terapia , Eletrocardiografia , Testes Genéticos , Humanos , Morbidade , Mutação/genética , FenótipoRESUMO
BACKGROUND AND PURPOSE: Andersen-Tawil syndrome (ATS) is a skeletal muscle channelopathy caused by KCNJ2 mutations, characterized by a clinical triad of periodic paralysis, cardiac arrhythmias and dysmorphism. The muscle phenotype, particularly the atypical forms with prominent permanent weakness or predominantly painful symptoms, remains incompletely characterized. METHODS: A retrospective clinical, histological, electroneuromyography (ENMG) and genetic analysis of molecularly confirmed ATS patients, diagnosed and followed up at neuromuscular reference centers in France, was conducted. RESULTS: Thirty-five patients from 27 unrelated families carrying 17 different missense KCNJ2 mutations (four novel mutations) and a heterozygous KCNJ2 duplication are reported. The typical triad was observed in 42.9% of patients. Cardiac abnormalities were observed in 65.7%: 56.5% asymptomatic and 39.1% requiring antiarrhythmic drugs. 71.4% of patients exhibited dysmorphic features. Muscle symptoms were reported in 85.7%, amongst whom 13.3% had no cardiopathy and 33.3% no dysmorphic features. Periodic paralysis was present in 80% and was significantly more frequent in men. Common triggers were exercise, immobility and carbohydrate-rich diet. Ictal serum potassium concentrations were low in 53.6%. Of the 35 patients, 45.7% had permanent weakness affecting proximal muscles, which was mild and stable or slowly progressive over several decades. Four patients presented with exercise-induced pain and myalgia attacks. Diagnostic delay was 14.4 ± 9.5 years. ENMG long-exercise test performed in 25 patients (71.4%) showed in all a decremental response up to 40%. Muscle biopsy performed in 12 patients revealed tubular aggregates in six patients (associated in two of them with vacuolar lesions), dystrophic features in one patient and non-specific myopathic features in one patient; it was normal in four patients. DISCUSSION: Recognition of atypical features (exercise-induced pain or myalgia and permanent weakness) along with any of the elements of the triad should arouse suspicion. The ENMG long-exercise test has a high diagnostic yield and should be performed. Early diagnosis is of utmost importance to improve disease prognosis.
Assuntos
Síndrome de Andersen , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Diagnóstico Tardio , Humanos , Mutação/genética , Mialgia , Paralisia , Estudos RetrospectivosRESUMO
Andersen-Tawil Syndrome (ATS) is a rare periodic paralysis with typical skeletal and neuromuscular features. Cardiac involvement may range from asymptomatic ventricular arrhythmias to sudden death. Its management remains challenging and the choice between antiarrhythmic drug therapy and implantable cardioverter defibrillator (ICD) is not simple. We present a case of ATS patient with episodes of bidirectional ventricular tachycardia, well controlled by flecainide therapy initially, which in particular conditions of fever and hypokaliemia had a cardiac arrest with ventricular fibrillation, with neurological sequelae and need of an ICD implant. A review of the therapeutic management of this disease is presented.
Assuntos
Síndrome de Andersen , Desfibriladores Implantáveis , Taquicardia Ventricular , Síndrome de Andersen/complicações , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/terapia , Antiarrítmicos/uso terapêutico , Morte Súbita Cardíaca/prevenção & controle , Eletrocardiografia , Flecainida , Humanos , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/terapiaRESUMO
We report on a 44-year-old woman with coincidence of two genetic disorders: Andersen-Tawil syndrome and Marfan syndrome. In both, life-threatening arrhythmias could occur. A 44-year-old woman presented acute ascending aortic dissection with aortic arch involvement and chronic thoracic descending and abdominal aortic dissection. Clinical and genetic examination confirmed Marfan syndrome (MFS) diagnosis. Due to repolarization disorder in ECG and premature ventricular contractions in Holter ECG, the sequencing data were analyzed again and mutation in KCNJ2 gene was identified. The case showed that coincidence of Andersen-Tawil syndrome (ATS) and MFS did not provoke life-threatening arrhythmias. Complication was rather caused by expression of FBN1 mutation.
Assuntos
Síndrome de Andersen/genética , Fibrilina-1/genética , Predisposição Genética para Doença , Síndrome de Marfan/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Adulto , Síndrome de Andersen/complicações , Síndrome de Andersen/diagnóstico , Dissecção Aórtica/diagnóstico , Dissecção Aórtica/etiologia , Dissecção Aórtica/cirurgia , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/etiologia , Aneurisma da Aorta Torácica/cirurgia , Eletrocardiografia , Serviço Hospitalar de Emergência , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Humanos , Síndrome de Marfan/complicações , Síndrome de Marfan/diagnóstico , Monitorização Fisiológica , Multimorbidade , Mutação , Doenças Raras , Medição de Risco , Índice de Gravidade de Doença , Resultado do TratamentoRESUMO
Periodic paralyses (PPs) are rare neuromuscular disorders caused by mutations in skeletal muscle sodium, calcium, and potassium channel genes. PPs include hypokalemic paralysis, hyperkalemic paralysis, and Andersen-Tawil syndrome. Common features of PP include autosomal dominant inheritance, onset typically in the first or second decades, episodic attacks of flaccid weakness, which are often triggered by diet or rest after exercise. Diagnosis is based on the characteristic clinic presentation then confirmed by genetic testing. In the absence of an identified genetic mutation, documented low or high potassium levels during attacks or a decrement on long exercise testing support diagnosis. The treatment approach should include both management of acute attacks and prevention of attacks. Treatments include behavioral interventions directed at avoidance of triggers, modification of potassium levels, diuretics, and carbonic anhydrase inhibitors. Muscle Nerve 57: 522-530, 2018.
Assuntos
Síndrome de Andersen/diagnóstico , Paralisias Periódicas Familiares/diagnóstico , Acetazolamida/uso terapêutico , Síndrome de Andersen/terapia , Antiarrítmicos/uso terapêutico , Terapia Comportamental , Inibidores da Anidrase Carbônica/uso terapêutico , Diuréticos/uso terapêutico , Diurético Poupador de Potássio/uso terapêutico , Humanos , Hidroclorotiazida/uso terapêutico , Paralisia Periódica Hipopotassêmica/diagnóstico , Paralisia Periódica Hipopotassêmica/terapia , Paralisias Periódicas Familiares/terapia , Paralisia Periódica Hiperpotassêmica/diagnóstico , Paralisia Periódica Hiperpotassêmica/terapia , Potássio/uso terapêuticoRESUMO
BACKGROUND: Mutations in the KCNJ2 gene encoding the ion channel Kir2.1 have been linked to the Andersen-Tawil syndrome (ATS). Molecular genetic screening performed in a family exhibiting clinical ATS phenotypes unmasked a novel sequence variant (c.434A > G, p.Y145C) in this gene. The aim of this study was to investigate the effect of this variant on Kir2.1 ion channel functionality. METHODS: Mutant as well as wild type GFP tagged Kir2.1 channels were expressed in HEK293 cells. In order to examine the effect of the new variant, electrophysiological measurements were performed using patch clamp technique. Cellular localization of the mutant in comparison to the wild type ion channel was analyzed by confocal laser scanning microscopy. RESULTS: The currents of cells expressing only mutant channels or a mixture of wild type and mutant were significantly reduced compared to those expressing wild type (WT) channels (p < 0.01). Whereas WT expressing cells exhibited at -120 mV an averaged current of -4.5 ± 1.9 nA, the mutant generates only a current of -0.17 ± 0.07 nA. A co-expression of mutant and WT channel generates only a partial rescue of the WT current. Confocal laser scanning microscopy indicated that the novel variant is not interfering with synthesis and/or protein trafficking. CONCLUSIONS: The detected sequence variant causes loss-of-function of the Kir2.1 channel and explains the clinical phenotypes observed in Andersen-Tawil syndrome patients.
Assuntos
Síndrome de Andersen/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Adolescente , Sequência de Aminoácidos , Síndrome de Andersen/diagnóstico , Criança , Regulação da Expressão Gênica , Variação Genética , Genótipo , Células HEK293 , Heterozigoto , Humanos , Masculino , Mutação , Técnicas de Patch-Clamp , Linhagem , Fenótipo , Alinhamento de SequênciaAssuntos
Síndrome de Andersen/fisiopatologia , Paralisias Periódicas Familiares/fisiopatologia , Paralisia/fisiopatologia , Acetazolamida/uso terapêutico , Adulto , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/tratamento farmacológico , Feminino , Humanos , Paralisias Periódicas Familiares/diagnóstico , Paralisia/diagnósticoRESUMO
Andersen-Tawil syndrome (ATS) is an inherited disease characterized by ventricular arrhythmias, periodic paralysis, and dysmorphic features. It results from a heterozygous mutation of KCNJ2, but little is known about mosaicism in ATS. We performed genetic analysis of KCNJ2 in 32 ATS probands and their family members and identified KCNJ2 mutations in 25 probands, 20 families who underwent extensive genetic testing. These tests revealed that seven probands carried de novo mutations while 13 carried inherited mutations from their parents. We then specifically assessed a single proband and the respective family. The proband was a 9 year old girl who fulfilled the ATS triad and carried an insertion mutation (p.75_76insThr). We determined that the proband's mother carried a somatic mosaicism and that the proband's younger brother also carried the ATS phenotype with the same insertion mutation. The mother, who exhibited mosaicism, was asymptomatic, although she exhibited Q(T)U prolongation. Mutant allele frequency was 11% as per TA cloning and 17.3% as per targeted deep sequencing. Our observations suggest that targeted deep sequencing is useful for the detection of mosaicism and that the detection of mosaic mutations in parents of apparently sporadic ATS patients can help in the process of genetic counseling.
Assuntos
Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Mosaicismo , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Alelos , Eletrocardiografia , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , FenótipoRESUMO
Andersen-Tawil syndrome (ATS) is one of the periodic paralyses, a set of skeletal muscle disorders that cause transient weakness of the arms and legs lasting minutes to many hours. Distinguishing features of ATS include facial and limb dysmorphisms, cardiac arrhythmia, difficulties with executive function, and association with dominant mutations in the potassium channel, KCNJ2. In this review, we discuss the key features of ATS, diagnostic testing, pathophysiology and treatment of ATS, and compare them with other periodic paralyses.
Assuntos
Síndrome de Andersen , Síndrome de Andersen/genética , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/terapia , Síndrome de Andersen/fisiopatologia , Humanos , Mutação/genética , Canais de Potássio Corretores do Fluxo de Internalização/genéticaRESUMO
AIMS: Andersen-Tawil syndrome (ATS) is an uncommon form of channelopathy linked to mutations in the KCNJ2 gene. Currently, little is known about the long-term arrhythmic prognosis of this disease. METHODS AND RESULTS: We conducted a retrospective multicentre study in nine French hospitals. Patients were recruited only if they were KCNJ2 mutation carriers. Thirty-six patients (female n = 22, 61%) from 20 unrelated kindred were included with a mean follow-up of 9.5 ± 8.2 years. We found 12 distinct KCNJ2 mutations in the 20 probands. Three of them were novel. Thirteen patients (36%) experienced syncope and one patient was resuscitated from cardiac arrest before diagnosis. The mean QTc interval was 439 ± 57 ms and QUc was 642 ± 64 ms. All patients had normal ejection fraction. Holter recordings in 33 patients found 11 272 premature ventricular complexes (PVCs) per day on average, 25 patients had episodes of bigeminy, and 25 patients had polymorphic PVCs. Twenty-three patients (70%) had non-sustained polymorphic ventricular tachycardia (VT), and six sustained polymorphic VT. Only one patient presented with torsades de pointes. Patients were treated with beta-blocker (n = 20), beta-blocker and amiodarone (n = 2), beta-blocker and flecainide (n = 6), or acetazolamide (n = 6). Radiofrequency ablation was attempted in five patients without clinical success. An implantable cardiac defibrillator was implanted in three patients. During follow-up, none of the patients died, four patients experienced syncope under treatment, and one patient had non-fatal cardiac arrest. CONCLUSION: Despite a severe clinical presentation with a very high rate of ventricular arrhythmias, the arrhythmic prognosis of the ATS patients is relatively good under treatment.
Assuntos
Síndrome de Andersen/genética , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Adolescente , Adulto , Idoso , Síndrome de Andersen/complicações , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/fisiopatologia , Síndrome de Andersen/terapia , Criança , Pré-Escolar , Análise Mutacional de DNA , Eletrocardiografia , Feminino , França , Predisposição Genética para Doença , Parada Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Estudos Retrospectivos , Síncope/genética , Fatores de Tempo , Adulto JovemRESUMO
BACKGROUND: Andersen-Tawil syndrome (ATS) is a rare inherited multisystem disorder associated with mutations in KCNJ2 and low prevalence of life-threatening ventricular arrhythmias. Our aim was to describe the clinical course of ATS in a family, in which the proband survived aborted cardiac arrest (ACA) and genetic screening revealed a previously unknown mutation (c.271_282del12[p.Ala91_Leu94del]) in the KCNJ2 gene. METHODS: A cascade family screening was performed in a 5-generation family after identification of the KCNJ2 mutation in the proband. Subsequently, 10 of 21 screened individuals appeared to be mutation carriers (median age 38 [range 10-75] years, 3 female). Mutation carriers underwent clinical examination including biochemistry panel, cardiac ultrasound, Holter ECG, and exercise stress test. RESULTS: (1) At baseline, 2 patients had survived ACA, 3 had syncope or presyncopal attacks, and 2 reported palpitations. Exercise-induced nonsustained bidirectional ventricular tachycardia was documented in 4 patients, 2 received implantable cardioverter-defibrillators (ICD) for primary prevention and 2 for secondary prevention. (2) During follow-up, 1 primary prevention and 1 secondary prevention patient received in total 4 adequate ICD shocks. Life-threatening ventricular arrhythmias were documented during childhood in 5 of 10 mutation carriers. (3) All mutation carriers presented with characteristic mild dysmorphic features. Only 1 patient suffered from periodic paralysis. All had normal serum potassium level at repeated assessments and none had any other extracardiac disease manifestation. CONCLUSION: Our findings suggest that the novel KCNJ2 mutation is associated with a predominantly cardiac phenotype of Andersen-Tawil syndrome with high propensity to life-threatening ventricular arrhythmias presenting from childhood and young adulthood.
Assuntos
Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Taquicardia Ventricular/genética , Adolescente , Adulto , Idoso , Síndrome de Andersen/terapia , Criança , Desfibriladores Implantáveis , Diagnóstico Diferencial , Eletrocardiografia/métodos , Feminino , Testes Genéticos/métodos , Parada Cardíaca/genética , Parada Cardíaca/prevenção & controle , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto JovemRESUMO
A case of a rare disease - Andersen-Tawil the syndrome (ATS) is presented. Diagnosis of ATS, 7-th molecular-genetic variant of long QT syndrome was made basing on the characteristic clinical picture (periodic stress induced syncopal states), data of ECG and its Holter monitoring (pronounced QT prolongation, bouts of polymorphic bidirectional ventricular tachycardia), typical dysmorphic features (low-set ears, small mandible, brachydactyly, fifth-digit clinodactyly). However mutation of the KCNJ2 gene typical for this variant was not detected. Problems of pathogenesis, diagnostics, and treatment of the disease are discussed with special stress on class IC antiarrhythmic drugs.
Assuntos
Síndrome de Andersen , Antiarrítmicos , Arritmias Cardíacas/etiologia , Síncope/etiologia , Adulto , Síndrome de Andersen/complicações , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/tratamento farmacológico , Síndrome de Andersen/genética , Síndrome de Andersen/fisiopatologia , Antiarrítmicos/administração & dosagem , Antiarrítmicos/classificação , Antiarrítmicos/farmacocinética , Eletrocardiografia/métodos , Feminino , Testes Genéticos , Humanos , Resultado do TratamentoRESUMO
Andersen-Tawil syndrome (ATS) is a rare inheritable disease associated with loss-of-function mutations in KCNJ2, the gene coding the strong inward rectifier potassium channel Kir2.1, which forms an essential membrane protein controlling cardiac excitability. ATS is usually marked by a triad of periodic paralysis, life-threatening cardiac arrhythmias and dysmorphic features, but its expression is variable and not all patients with a phenotype linked to ATS have a known genetic alteration. The mechanisms underlying this arrhythmogenic syndrome are poorly understood. Knowing such mechanisms would be essential to distinguish ATS from other channelopathies with overlapping phenotypes and to develop individualized therapies. For example, the recently suggested role of Kir2.1 as a countercurrent to sarcoplasmic calcium reuptake might explain the arrhythmogenic mechanisms of ATS and its overlap with catecholaminergic polymorphic ventricular tachycardia. Here we summarize current knowledge on the mechanisms of arrhythmias leading to sudden cardiac death in ATS. We first provide an overview of the syndrome and its pathophysiology, from the patient's bedside to the protein and discuss the role of essential regulators and interactors that could play a role in cases of ATS. The review highlights novel ideas related to some post-translational channel interactions with partner proteins that might help define the molecular bases of the arrhythmia phenotype. We then propose a new all-embracing classification of the currently known ATS loss-of-function mutations according to their position in the Kir2.1 channel structure and their functional implications. We also discuss specific ATS pathogenic variants, their clinical manifestations, and treatment stratification. The goal is to provide a deeper mechanistic understanding of the syndrome toward the development of novel targets and personalized treatment strategies.
Assuntos
Síndrome de Andersen , Taquicardia Ventricular , Humanos , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Síndrome de Andersen/terapia , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética , Mutação , Fenótipo , Morte Súbita Cardíaca/etiologiaRESUMO
Bidirectional ventricular tachycardia (VT) is a rare ventricular dysrhythmia with a limited differential diagnosis that includes digitalis toxicity, catecholaminergic polymorphic VT, aconite poisoning, and genetic channelopathy syndromes, specifically, Andersen-Tawil syndrome (ATS). We present a case of a young female with palpitations found to have bidirectional VT on cardiac event monitor and strong family history of cardiac dysrhythmias. Her physical examination findings included minor dysmorphic features of mandibular hypoplasia, hypertelorism, and clinodactyly. The patient was clinically diagnosed with ATS and started on a beta-blocker for control of ectopy. A second Holter review demonstrated markedly decreased burden of ventricular ectopy compared to the initial monitoring. She was referred for genetic testing, which revealed a KCNJ2 mutation. Bidirectional VT is an uncommon ventricular dysrhythmia that has a limited differential diagnosis, one of which is ATS-a rare genetic disorder that results from mutations in the KCNJ2 gene. The condition is frequently associated with developmental, skeletal, and cardiac abnormalities. Although there are no strong recommendations that exist for treatment of ventricular dysrhythmias associated with this genetic disorder, we demonstrate a case of clinical improvement in a patient with ATS by using the beta-blocker metoprolol succinate. Furthermore, we propose that ATS patients may not need exercise restrictions as overall ventricular ectopy burden decreased with exercise and there was no prolongation of the QT interval. This patient will continue to follow up in our clinic to reassess symptom burden and for continued monitoring for the development of any new features.
Assuntos
Síndrome de Andersen , Taquicardia Ventricular , Complexos Ventriculares Prematuros , Humanos , Feminino , Síndrome de Andersen/complicações , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Complexos Ventriculares Prematuros/complicações , Complexos Ventriculares Prematuros/genética , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/tratamento farmacológico , Testes GenéticosAssuntos
Síndrome de Andersen/genética , Paralisia Periódica Hipopotassêmica/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Adulto , Síndrome de Andersen/sangue , Síndrome de Andersen/diagnóstico , Humanos , Paralisia Periódica Hipopotassêmica/sangue , Paralisia Periódica Hipopotassêmica/diagnóstico , Paralisia Periódica Hipopotassêmica/tratamento farmacológico , Masculino , Anamnese , Linhagem , Potássio/sangue , Potássio/uso terapêutico , Recidiva , Análise de Sequência de DNARESUMO
INTRODUCTION: Andersen-Tawil syndrome (ATS) due to Kir2.1mutations typically manifests as periodic paralysis, cardiac arrhythmias and developmental abnormalities but is often difficult to diagnose clinically. This study was undertaken to determine whether sarcolemmal dysfunction could be identified with muscle velocity recovery cycles (MVRCs). METHODS: Eleven genetically confirmed ATS patients and 20 normal controls were studied. MVRCs were recorded with 1, 2, and 5 conditioning stimuli and with single conditioning stimuli during intermittent repetitive stimulation at 20 Hz, in addition to the long exercise test. RESULTS: ATS patients had longer relative refractory periods (P < 0.0001) and less early supernormality, consistent with membrane depolarization. Patients had reduced enhancement of late supernormality with 5 conditioning stimuli (P < 0.0001), and less latency reduction during repetitive stimulation (P < 0.001). Patients were separated completely from controls by combining MVRC and repetitive stimulation. CONCLUSIONS: MVRCs combined with repetitive stimulation differentiated ATS patients from controls more effectively than the conventional long-exercise test.
Assuntos
Síndrome de Andersen/diagnóstico , Canalopatias/diagnóstico , Músculo Esquelético/fisiopatologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Sarcolema/fisiologia , Adulto , Síndrome de Andersen/genética , Síndrome de Andersen/fisiopatologia , Canalopatias/genética , Canalopatias/fisiopatologia , Estimulação Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , MutaçãoRESUMO
Andersen-Tawil Syndrome (ATS) is a rare potassium channel disorder, characterized by episodic weakness, ventricular arrhythmias and dysmorphic features (short stature, scoliosis, clinodactyly, hypertelorism, small or prominent low set ears, micrognathia and broad forehead). We report a case of hypokalemic periodic paralysis with dysmorphic facial features and ventricular arrhythmia resembling Andersen-Tawil syndrome.