Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Ecol Appl ; 34(1): e2833, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36864716

RESUMO

Few studies tried to explore the mitigation effect and underlying mechanisms of biochar and their complex for negative allelopathy from invasive plants, which may provide a new way in the invasive plant management. Herein, an invasive plant (Solidago canadensis)-derived biochar (IBC) and its composite with hydroxyapatite (HAP/IBC) were synthesized by high temperature pyrolysis, and characterized by scanning electron microscopy, energy dispersion spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Then, both the batch adsorption and pot experiments were conducted to compare the removal effects of kaempferol-3-O-ß-D-glucoside (C21 H20 O11 , kaempf), an allelochemical from S. canadensis, on IBC and HAP/IBC, respectively. HAP/IBC showed a stronger affinity for kaempf than IBC due to its higher specific surface area, more functional groups (P-O, P-O-P, PO4 3- ), stronger crystallization [Ca3 (PO4 )2 ]. The maximum kaempf adsorption capacity on HAP/IBC was six times higher than on IBC (10.482 mg/g > 1.709 mg/g) via π-π interactions, functional groups, and metal complexation. The kaempf adsorption process could be fitted best by both pseudo-second-order kinetic and Langmuir isotherm models. Furthermore, HAP/IBC addition into soils could enhance and even recover the germination rate and/or seedling growth of tomato inhibited by negative allelopathy from the invasive S. canadensis. These results indicate that the composite of HAP/IBC could more effectively mitigate the allelopathy from S. canadensis than IBC, which may be a potential efficient approach to control the invasive plant and improve invaded soils.


Assuntos
Solidago , Poluentes Químicos da Água , Alelopatia , Durapatita/química , Carvão Vegetal/química , Solo , Poluentes Químicos da Água/análise
2.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338810

RESUMO

New substances with antimicrobial properties are needed to successfully treat emerging human, animal, or plant pathogens. Seven clerodane diterpenes, previously isolated from giant goldenrod (Solidago gigantea) root, were tested against Gram-positive Bacillus subtilis, Bacillus spizizenii and Rhodococcus fascians by measuring minimal bactericidal concentration (MBC), minimal inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50). Two of them, Sg3a (a dialdehyde) and Sg6 (solidagoic acid B), were proved to be the most effective and were selected for further study. Bacillus spizizenii was incubated with the two diterpenes for shorter (1 h) or longer (5 h) periods and then subjected to genome-wide transcriptional analyses. Only a limited number of common genes (28 genes) were differentially regulated after each treatment, and these were mainly related to the restoration of cell membrane integrity and to membrane-related transports. Changes in gene activity indicated that, among other things, K+ and Na+ homeostasis, pH and membrane electron transport processes may have been affected. Activated export systems can be involved in the removal of harmful molecules from the bacterial cells. Inhibition of bacterial chemotaxis and flagellar assembly, as well as activation of genes for the biosynthesis of secondary metabolites, were observed as a general response. Depending on the diterpenes and the duration of the treatments, down-regulation of the protein synthesis-related, oxidative phosphorylation, signal transduction and transcription factor genes was found. In other cases, up-regulation of the genes of oxidation-reduction processes, sporulation and cell wall modification could be detected. Comparison of the effect of diterpenes with the changes induced by different environmental and nutritional conditions revealed several overlapping processes with stress responses. For example, the Sg6 treatment seems to have caused a starvation-like condition. In summary, there were both common and diterpene-specific changes in the transcriptome, and these changes were also dependent on the length of treatments. The results also indicated that Sg6 exerted its effect more slowly than Sg3a, but ultimately its effect was greater.


Assuntos
Anti-Infecciosos , Diterpenos Clerodânicos , Diterpenos , Solidago , Animais , Humanos , Diterpenos Clerodânicos/farmacologia , Solidago/química , Diterpenos/farmacologia , Bacillus subtilis , Membrana Celular
3.
J Environ Manage ; 353: 120216, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38290260

RESUMO

Biological invasions degrade ecosystems, negatively affecting human well-being and biodiversity. Restoration of invaded agricultural ecosystems is among specific goals of European Union Biodiversity Strategy. Successful restoration of invaded lands is a long-term process that requires monitoring to assess the effects of interventions. Here, we present the results of a long-term experiment (8 years) on restoration of semi-natural grassland on abandoned arable field overgrown by invasive Solidago species (S. gigantea and S. canadensis). We examined effect of different invaders removal methods (rototilling, turf stripping, herbicide application) and seed application practices (commercial seed mixture, fresh hay) on changes in species composition and taxonomic diversity of restored vegetation. Our results showed a positive effect of grassland restoration on taxonomic diversity and species composition, manifested by a decrease in Solidago cover and an increase in cover and richness of target graminoids and forbs characteristic of grassland. The seed source had a longer lasting and still observable effect on the vegetation composition than the Solidago removal treatments, which ceased to differ significantly in their influence after the first few years. Applying fresh hay as a seed source increased the cover of grassland species such as Arrhenatherum elatius and Poa pratensis. For commercial seed mixture, we observed the high cover of Lolium perenne and Schedonorus pratensis (introduced with seed mixture) at the beginning and the slow decrease along the experiment course. The most striking effect was the fresh hay with herbicide application, which resulted in the lowest Solidago cover and the highest cover of target graminoids. Nonetheless, with years the non-chemical methods, including no treatment, gives comparable to herbicide effectiveness of restoration. Overall, during the experiment, alpha diversity increased, while beta and gamma diversity reached a species maximum in the third year, and then decreased. In conclusion, this study gives guidance to successful restoration of species-rich grasslands on sites invaded by Solidago. It should be emphasised that short-term effect differ considerably from long-term outputs, especially highlighting the importance of seed source, as well as effectiveness of environmentally friendly methods such as regular mowing to control the invader.


Assuntos
Herbicidas , Lolium , Poa , Solidago , Humanos , Espécies Introduzidas , Ecossistema , Pradaria , Solo/química , Biodiversidade , Plantas
4.
Molecules ; 29(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257240

RESUMO

The present study evaluated the antioxidant and antidiabetic properties of Medicago sativa and Solidago virgaurea extracts enriched in polyphenolic compounds. The extracts were obtained by accelerated solvent extraction (ASE) and laser irradiation. Then, microfiltration was used for purification, followed by nanofiltration used to concentrate the two extracts. The obtained extracts were analyzed to determine their antioxidant activity using DPPH radical scavenging and reducing power methods. The antidiabetic properties have been investigated in vitro on a murine insulinoma cell line (ß-TC-6) by the inhibition of α-amylase and α-glucosidase. M. sativa obtained by laser irradiation and concentrated by nanofiltration showed the highest DPPH• scavenging (EC50 = 105.2 ± 1.1 µg/mL) and reducing power activities (EC50 = 40.98 ± 0.2 µg/mL). M. sativa extracts had higher inhibition on α-amylase (IC50 = 23.9 ± 1.2 µg/mL for concentrated extract obtained after ASE, and 26.8 ± 1.1), while S. virgaurea had the highest α-glucosidase inhibition (9.3 ± 0.9 µg/mL for concentrated extract obtained after ASE, and 8.6 ± 0.7 µg/mL for concentrated extract obtained after laser extraction). The obtained results after evaluating in vitro the antidiabetic activity showed that the treatment with M. sativa and S. virgaurea polyphenolic-rich extracts stimulated the insulin secretion of ß-TC-6 cells, both under normal conditions and under hyperglycemic conditions as well. This paper argues that M. sativa and S. virgaurea polyphenolic-rich extracts could be excellent natural sources with promising antidiabetic potential.


Assuntos
Neoplasias Pancreáticas , Solidago , Animais , Camundongos , Antioxidantes/farmacologia , Medicago sativa , alfa-Glucosidases , Hipoglicemiantes/farmacologia , alfa-Amilases , Extratos Vegetais/farmacologia
5.
Proc Biol Sci ; 290(1992): 20222187, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750196

RESUMO

How do researchers choose their study species? Some choices are based on ecological or economic importance, some on ease of study, some on tradition-but could the name of a species influence researcher decisions? We asked whether phytophagous arthropod species named after their host plants were more likely to be assayed for host-associated genetic differentiation (or 'HAD'; the evolution of cryptic, genetically isolated host specialists within an apparently more generalist lineage). We chose 30 arthropod species (from a Google Scholar search) for which a HAD hypothesis has been tested. We traced the etymologies of species names in the 30 corresponding genera, and asked whether HAD tests were more frequent among species whose etymologies were based on host-plant names (e.g. Eurosta solidaginis, which attacks Solidago) versus those with other etymologies (e.g. Eurosta fenestrata, from Latin fenestra, 'window'). Species with host-derived etymologies were more likely to feature in studies of HAD than those with other etymologies. We speculate that the etymology of a scientific name can draw a researcher's attention to aspects of life-history and thus influence the direction of our scientific gaze.


Assuntos
Artrópodes , Solidago , Tephritidae , Animais , Plantas , Interações Hospedeiro-Parasita
6.
New Phytol ; 239(3): 1098-1111, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247337

RESUMO

Lettuce produces natural rubber (NR) with an average Mw of > 1 million Da in laticifers, similar to NR from rubber trees. As lettuce is an annual, self-pollinating, and easily transformable plant, it is an excellent model for molecular genetic studies of NR biosynthesis. CRISPR/Cas9 mutagenesis was optimized using lettuce hairy roots, and NR-deficient lettuce was generated via bi-allelic mutations in cis-prenyltransferase (CPT). This is the first null mutant of NR deficiency in plants. In the CPT mutant, orthologous CPT counterparts from guayule (Parthenium argentatum) and goldenrod (Solidago canadensis) were expressed under a laticifer-specific promoter to examine how the average Mw of NR is affected. No developmental defects were observed in the NR-deficient mutants. The lettuce mutants expressing guayule and goldenrod CPT produced 1.8 and 14.5 times longer NR, respectively, than the plants of their origin. This suggests that, although goldenrod cannot synthesize a sufficiently lengthy NR, goldenrod CPT has the catalytic competence to produce high-quality NR in the cellular context of lettuce laticifers. Thus, CPT alone does not determine the length of NR. Other factors, such as substrate concentration, additional proteins, and/or the nature of protein complexes including CPT-binding proteins, influence CPT activity in determining NR length.


Assuntos
Borracha , Solidago , Borracha/química , Borracha/metabolismo , Lactuca/genética , Transferases/genética , Transferases/metabolismo
7.
Am J Bot ; 110(9): e16218, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37551707

RESUMO

PREMISE: Increased genome-material costs of N and P atoms inherent to organisms with larger genomes have been proposed to limit growth under nutrient scarcities and to promote growth under nutrient enrichments. Such responsiveness may reflect a nutrient-dependent diploid versus polyploid advantage that could have vast ecological and evolutionary implications, but direct evidence that material costs increase with ploidy level and/or influence cytotype-dependent growth, metabolic, and/or resource-use trade-offs is limited. METHODS: We grew diploid, autotetraploid, and autohexaploid Solidago gigantea plants with one of four ambient or enriched N:P ratios and measured traits related to material costs, primary and secondary metabolism, and resource-use. RESULTS: Relative to diploids, polyploids invested more N and P into cells, and tetraploids grew more with N enrichments, suggesting that material costs increase with ploidy level. Polyploids also generally exhibited strategies that could minimize material-cost constraints over both long (reduced monoploid genome size) and short (more extreme transcriptome downsizing, reduced photosynthesis rates and terpene concentrations, enhanced N-use efficiencies) evolutionary time periods. Furthermore, polyploids had lower transpiration rates but higher water-use efficiencies than diploids, both of which were more pronounced under nutrient-limiting conditions. CONCLUSIONS: N and P material costs increase with ploidy level, but material-cost constraints might be lessened by resource allocation/investment mechanisms that can also alter ecological dynamics and selection. Our results enhance mechanistic understanding of how global increases in nutrients might provide a release from material-cost constraints in polyploids that could impact ploidy (or genome-size)-specific performances, cytogeographic patterning, and multispecies community structuring.


Assuntos
Solidago , Solidago/genética , Ploidias , Diploide , Poliploidia , Tetraploidia
8.
Am J Bot ; 110(7): e16164, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37014095

RESUMO

PREMISE: The phylogenetic relationships among the ca. 138 species of goldenrods (Solidago; Asteraceae) have been difficult to infer due to species richness, and shallow interspecific genetic divergences. This study aims to overcome these obstacles by combining extensive sampling of goldenrod herbarium specimens with the use of a custom Solidago hybrid-sequence capture probe set. METHODS: A set of tissues from herbarium samples comprising ca. 90% of Solidago species was assembled and DNA was extracted. A custom hybrid-sequence capture probe set was designed, and data from 854 nuclear regions were obtained and analyzed from 209 specimens. Maximum likelihood and coalescent approaches were used to estimate the genus phylogeny for 157 diploid samples. RESULTS: Although DNAs from older specimens were both more fragmented and produced fewer sequencing reads, there was no relationship between specimen age and our ability to obtain sufficient data at the target loci. The Solidago phylogeny was generally well-supported, with 88/155 (57%) nodes receiving ≥95% bootstrap support. Solidago was supported as monophyletic, with Chrysoma pauciflosculosa identified as sister. A clade comprising Solidago ericameriodes, Solidago odora, and Solidago chapmanii was identified as the earliest diverging Solidago lineage. The previously segregated genera Brintonia and Oligoneuron were identified as placed well within Solidago. These and other phylogenetic results were used to establish four subgenera and fifteen sections within the genus. CONCLUSIONS: The combination of expansive herbarium sampling and hybrid-sequence capture data allowed us to quickly and rigorously establish the evolutionary relationships within this difficult, species-rich group.


Assuntos
Asteraceae , Solidago , Filogenia , Solidago/genética , Diploide , Análise de Sequência de DNA
9.
Ecotoxicology ; 32(1): 114-126, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36652123

RESUMO

Most of the allelopathic studies have focused on the independent allelopathy of one invasive plant, but have ignored the co-allelopathy of the two invasives. The variations in the type of acid rain can modulate the invasiveness of invasives via the changes in the allelopathy. Thus, it is vital to elucidate the allelopathy of invasives, particularly the co-allelopathy of the two invasives, under acid rain with different types, to illuminate the mechanisms driving the co-invasion of two invasives under diversified acid rain. However, little progress has been finished in this aspect presently. This study aimed to evaluate the co-allelopathy of two Asteraceae invasives Solidago canadensis L. and Erigeron annuus L. treated with acid rain with different nitrogen-to-sulfur ratios on seed germination and seedling growth of the horticultural Asteraceae species Lactuca sativa L. via a hydroponic experiment. Aqueous extracts of the two Asteraceae invasives generated obvious allelopathy on L. sativa. S. canadensis aqueous extracts caused stronger allelopathy. There may be an antagonistic effect for the co-allelopathy of the two Asteraceae invasives. Nitric acid at pH 5.6 weakened the allelopathy of the two Asteraceae invasives, but the other types of acid rain strengthened the allelopathy of the two Asteraceae invasives. The allelopathy of the two Asteraceae invasives increases with the increasing acidity of acid rain, but the allelopathy of the two Asteraceae invasives decreases with the increasing nitrogen-to-sulfur ratio of acid rain. Accordingly, the species number of invasives, and the acidity and type of acid rain modulated the impacts of acid rain on the allelopathy of the two Asteraceae invasives.


Assuntos
Chuva Ácida , Asteraceae , Solidago , Germinação , Alelopatia , Plântula , Extratos Vegetais
10.
Ecotoxicology ; 32(10): 1221-1232, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38032393

RESUMO

The phytotoxicity of invasive plants (IPS) has been identified as one of the main factors influencing their invasion success. The invasion of IPS can occur to varying degrees in the habitats. Two IPS can invade one habitat. This study aimed to evaluate the mono- and co-phytotoxicity of two Asteraceae IPS Solidago canadensis L. and Bidens pilosa L. with different invasion degrees (including light invasion (relative abundance <50%) and heavy invasion (relative abundance ≥50%)) on the horticultural Asteraceae species Lactuca sativa L., through a hydroponic experiment conducted on 9 cm Petri dishes. Leaf extracts of the two IPS can cause significant mono- and co-phytotoxicity. The mono- and co-phytotoxicity of the two IPS were concentration-dependent. The mono-phytotoxicity of S. canadensis was significantly increased with increasing invasion degree, but the opposite was true for the mono-phytotoxicity of B. pilosa. Leaf extracts of B. pilosa with light invasion caused stronger phytotoxicity than those of S. canadensis with light invasion. There may be an antagonistic effect for the co-phytotoxicity caused by mixed leaf extracts of the two IPS compared with those of either S. canadensis or B. pilosa. The phytotoxicity of the two IPS on the growth performance of neighboring plants may play a more important role in their mono-invasion than in their co-invasion. The phytotoxicity appeared to affect the growth performance of S. canadensis individuals more significantly when the invasion was heavy, while the growth performance of B. pilosa individuals seemed to be more influenced by phytotoxicity when the invasion was light. Consequently, the concentration of leaf extracts of IPS, the invasion degree of IPS, the species identity of IPS, and the species number of IPS modulated the mono- and co-phytotoxicity of the two IPS.


Assuntos
Asteraceae , Bidens , Solidago , Humanos , Espécies Introduzidas
11.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895047

RESUMO

Giant goldenrod (Solidago gigantea Aiton) is one of the most invasive plant species occurring in Europe. Since little is known about the molecular mechanisms contributing to its invasiveness, we examined the natural dynamics of the content of rhizome compounds, which can be crucial for plant resistance and adaptation to environmental stress. We focused on rhizomes because they are the main vector of giant goldenrod dispersion in invaded lands. Water-soluble sugars, proline, and abscisic acid (ABA) were quantified in rhizomes, as well as ABA in the rhizosphere from three different but geographically close natural locations in Poland (50°04'11.3″ N, 19°50'40.2″ E) under extreme light, thermal, and soil conditions, in early spring, late summer, and late autumn. The genetic diversity of plants between locations was checked using the random amplified polymorphic DNA (RAPD) markers. Sugar and proline content was assayed spectrophotometrically, and abscisic acid (ABA) with the ELISA immunomethod. It can be assumed that the accumulation of sugars in giant goldenrod rhizomes facilitated the process of plant adaptation to adverse environmental conditions (high temperature and/or water scarcity) caused by extreme weather in summer and autumn. The same was true for high levels of proline and ABA in summer. On the other hand, the lowering of proline and ABA in autumn did not confirm the previous assumptions about their synthesis in rhizomes during the acquisition of frost resistance by giant goldenrod. However, in the location with intensive sunlight and most extreme soil conditions, a constant amount of ABA in rhizomes was noticed as well as its exudation into the rhizosphere. This research indicates that soluble sugars, proline, and ABA alterations in rhizomes can participate in the mechanism of acclimation of S. gigantea to specific soil and meteorological conditions in the country of invasion irrespective of plant genetic variation.


Assuntos
Ácido Abscísico , Solidago , Rizoma , Açúcares , Prolina , Solo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Tempo (Meteorologia) , Aclimatação
12.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175200

RESUMO

Solidago rugosa is one of the goldenrod species native to North America but has sporadically naturalized as an alien plant in Europe. The investigation of the root and leaf ethanol extracts of the plant using a bioassay-guided process with an anti-Bacillus assay resulted in the isolation of two antimicrobial components. Structure elucidation was performed based on high-resolution tandem mass spectrometric and one- and two-dimensional NMR spectroscopic analyses that revealed (-)-hardwickiic acid (Compound 1) and (-)-abietic acid (Compound 2). The isolates were evaluated for their antimicrobial properties against several plant pathogenic bacterial and fungal strains. Both compounds demonstrated an antibacterial effect, especially against Gram-positive bacterial strains (Bacillus spizizenii, Clavibacter michiganensis subsp. michiganensis, and Curtobacterium flaccumfaciens pv. flaccumfaciens) with half maximal inhibitory concentration (IC50) between 1 and 5.1 µg/mL (5-20 times higher than that of the positive control gentamicin). In the used concentrations, minimal bactericidal concentration (MBC) was reached only against the non-pathogen B. spizizenii. Besides their activity against Fusarium avenaceum, the highest antifungal activity was observed for Compound 1 against Bipolaris sorokiniana with an IC50 of 3.8 µg/mL.


Assuntos
Anti-Infecciosos , Diterpenos , Solidago , Solidago/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/química , Antifúngicos/farmacologia , Diterpenos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
13.
Am J Bot ; 109(8): 1230-1241, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35819013

RESUMO

PREMISE: The enemy release hypothesis predicts that release from natural enemies, including soil-borne pathogens, liberates invasive plants from a negative regulating force. Nevertheless, invasive plants may acquire novel enemies and mutualists in the introduced range, which may cause variable effects on invader growth. However, how soil microorganisms may influence competitive ability of invasive plants along invasion chronosequences has been little explored. METHODS: Using the invasive plant Solidago canadensis, we tested whether longer residence times are associated with stronger negative plant-soil feedbacks and thus weaker competitive abilities at the individual level. We grew S. canadensis individuals from 36 populations with different residence times across southeastern China in competition versus no competition and in three different types of soils: (1) conspecific rhizospheric soils; (2) soils from uninvaded patches; and (3) sterilized soil. For our competitor treatments, we constructed synthetic communities of four native species (Bidens parviflora, Solanum nigrum, Kalimeris indica, and Mosla scabra), which naturally co-occur with Solidago canadensis in the field. RESULTS: Solidago canadensis populations with longer residence times experienced stronger positive plant-soil feedbacks and had greater competitive responses (i.e., produced greater above-ground biomass and grew taller) in conspecific rhizospheric soils than in sterilized or uninvaded soils. Moreover, S. canadensis from older populations significantly suppressed above-ground biomass of the native communities in rhizospheric and uninvaded soils but not in sterilized soil. CONCLUSIONS: The present results suggest that older populations of S. canadensis experience stronger positive plant-soil feedbacks, which may enhance their competitive ability against native plant communities.


Assuntos
Solidago , Retroalimentação , Espécies Introduzidas , Plantas , Solo , Microbiologia do Solo
14.
Microb Ecol ; 83(4): 960-970, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34279696

RESUMO

Both soil microbes and soil N:P ratios can affect plant growth, but it is unclear whether they can interact to alter plant growth and whether such an interactive effect depends on nutrient levels. Here, we tested the hypothesis that soil microbes can ameliorate the negative effects of nutrient imbalance caused by low or high N:P ratios on plant growth and that such an ameliorative effect of soil microbes depends on nutrient supply levels. We grew individuals of six populations of the clonal plant Solidago canadensis at three N:P ratios (low (1.7), intermediate (15), and high (135)), under two nutrient levels (low versus high) and in the presence versus absence of soil microbes. The presence of soil microbes significantly increased biomass of S. canadensis at all three N:P ratios and under both nutrient levels. Under the low-nutrient level, biomass, height, and leaf number of S. canadensis did not differ significantly among the three N:P ratio treatments in the absence of soil microbes, but they were higher at the high than at the low and the intermediate N:P ratio in the presence of soil microbes. Under the high-nutrient level, by contrast, biomass, height, and leaf number of S. canadensis were significantly higher at the low than at the high and the intermediate N:P ratio in the absence of soil microbes, but increased with increasing the N:P ratio in the presence of soil microbes. In the presence of soil microbes, number of ramets (asexual individuals) and the accumulation of N and P in plants were significantly higher at the high than at the low and the intermediate N:P ratio under both nutrient levels, whereas in the absence of soil microbes, they did not differ significantly among the three N:P ratio regardless of the nutrient levels. Our results provide empirical evidence that soil microbes can alter effects of N:P ratios on plant performance and that such an effect depends on nutrient availability. Soil microbes may, therefore, play a role in modulating ecosystem functions such as productivity and carbon and nutrient cycling via modulating nutrient imbalance caused by low and high N:P ratios.


Assuntos
Solidago , Biomassa , Ecossistema , Humanos , Nitrogênio/análise , Nutrientes , Solo
15.
Microb Ecol ; 84(1): 131-140, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34406446

RESUMO

Arbuscular mycorrhizal fungi (AMF) and soil amino acids both affect plant performance. However, little is known about how AMF compete for amino acids with native and invasive congeners. We conducted a factorial experiment (inoculation, native and invasive species, and amino acids) to examine the competition for amino acids between soil microbes and both native and invasive congeners. The competition for amino acids between AMF and invasive Solidago canadensis was weaker than that observed between AMF and native S. decurrens. This asymmetric competition increased the growth advantage of S. canadensis over S. decurrens. The efficacy (biomass production per unit of nitrogen supply) of amino acids compared to ammonium was smaller in S. canadensis than in S. decurrens when both species were grown without inoculation, but the opposite was the case when both species were grown with AMF. AMF and all microbes differentially altered four phenotypic traits (plant height, leaf chlorophyll content, leaf number, and root biomass allocation) and the pathways determining the effects of amino acids on growth advantages. These findings suggest that AMF could enhance plant invasiveness through asymmetric competition for amino acids and that amino acid-driven invasiveness might be differentially regulated by different microbial guilds.


Assuntos
Micorrizas , Solidago , Aminoácidos/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo/química
16.
Ecotoxicol Environ Saf ; 243: 114012, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030689

RESUMO

Co-invasion by two invasive plant species (IPS) can occur in the same habitat. Diversified acid deposition may change the co-invasion process by altering litter decomposition and plant-soil feedback signalling. This study examined the co-decomposition of two Asteraceae IPS (Solidago canadensis L. and Bidens pilosa L.) on litter decomposition rate, soil enzyme activities, and soil N-fixing bacterial communities under diversified acid deposition (mixed acid deposition at pH 5.6 and at pH 4.5, sulfuric acid at pH 4.5, and nitric acid at pH 4.5). B. pilosa litter degraded faster than S. canadensis litter. Acid deposition at higher acidity accelerated the decomposition rate of both pure S. canadensis litter and the equally mixed litters from the two Asteraceae IPS. Antagonistic responses may occur during the co-decomposition of the two Asteraceae IPS with mixed acid deposition, regardless of the pH, as well as with nitric acid deposition at pH 4.5; in contrast, there may be neutral responses for the co-decomposition process with sulfuric acid at pH 4.5. The type of acid deposited may be one of the key factors affecting the intensity of the mixing effect affecting the co-decomposition. Acid deposition at higher acidity weakened the antagonistic responses for the co-decomposition of the two Asteraceae IPS compared with the response to weak acids. Together, these results indicate that acid deposition at higher acidity could facilitate the co-invasion of the two Asteraceae IPS mainly through accelerated litter decomposition as well as weakened antagonistic responses for co-decomposition.


Assuntos
Asteraceae , Solidago , Ecossistema , Espécies Introduzidas , Ácido Nítrico , Folhas de Planta , Plantas , Solo/química , Ácidos Sulfúricos
17.
Chem Biodivers ; 19(10): e202200728, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36056470

RESUMO

Solidago canadensis L., native to North America, is now an invasive plant worldwide. Its abundant seeds, rapid vegetative reproduction ability, and allelopathy to other plants are the main reasons for its successful invasion. It has negative impacts on the ecological environment of the invaded area and causes a reduction in local biodiversity and economic losses of agriculture and stock farming. Each part of the plant contains a variety of allelochemicals (terpenoids, phenolics, and flavonoids), including a large number of essential oil components. These allelochemicals can be released in various ways to inhibit the growth of adjacent plants and promote their invasion; they can also affect soil properties and soil microorganisms. This article summarizes the allelopathic effects of S. canadensis on other plant species and the interaction mechanism between it and the ecosystem.


Assuntos
Óleos Voláteis , Solidago , Alelopatia , Ecossistema , Espécies Introduzidas , Solo/química , Feromônios/farmacologia , Flavonoides , Terpenos
18.
Molecules ; 27(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335204

RESUMO

To transform tall goldenrods, which are invasive alien plant that destroy the ecosystem of South Korea, into useful materials, cellulose fibers isolated from tall goldenrods are applied as EMI shielding materials in this study. The obtained cellulose fibers were blended with CNTs, which were used as additives, to improve the electrical conductivity. TGCF/CNT papers prepared using a facile paper manufacturing process with various weight percent ratios and thickness were carbonized at high temperatures and investigated as EMI shielding materials. The increase in the carbonization temperature, thickness, and CNT content enhanced the electrical conductivity and EMI SE of TGCF/CNT carbon papers. TGCF/CNT-15 papers, with approximately 4.5 mm of thickness, carbonized at 1300 °C exhibited the highest electrical conductivity of 6.35 S cm-1, indicating an EMI SE of approximately 62 dB at 1.6 GHz of the low frequency band. Additionally, the obtained TGCF/CNT carbon papers were flexible and could be bent and wound without breaking.


Assuntos
Nanotubos de Carbono , Solidago , Celulose , Ecossistema , Fenômenos Eletromagnéticos
19.
Molecules ; 27(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35630802

RESUMO

Spodoptera frugiperda (S. frugiperda) remains a global primary pest of maize. Therefore, new options to combat this pest are necessary. In this study, the insecticidal activity of three crude foliar extracts (ethanol, dichloromethane, and hexane) and their main secondary metabolites (quercetin and chlorogenic acid) of the species Solidago graminifolia (S. graminifolia) by ingestion bioassays against S. frugiperda larvae was analyzed. Additionally, the extracts were phytochemically elucidated by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. Finally, an in silico study of the potential interaction of quercetin on S. frugiperda acetylcholinesterase was performed. Organic extracts were obtained in the range from 5 to 33%. The ethanolic extract caused higher mortality (81%) with a half-maximal lethal concentration (LC50) of 0.496 mg/mL. Flavonoid secondary metabolites such as hyperoside, quercetin, isoquercetin, kaempferol, and avicularin and some phenolic acids such as chlorogenic acid, solidagoic acid, gallic acid, hexoside, and rosmarinic acid were identified. In particular, quercetin had an LC50 of 0.157 mg/mL, and chlorogenic acid did not have insecticidal activity but showed an antagonistic effect on quercetin. The molecular docking analysis of quercetin on the active site of S. frugiperda acetylcholinesterase showed a -5.4 kcal/mol binding energy value, lower than acetylcholine and chlorpyrifos (-4.45 and -4.46 kcal/mol, respectively). Additionally, the interactions profile showed that quercetin had π-π interactions with amino acids W198, Y235, and H553 on the active site.


Assuntos
Asteraceae , Inseticidas , Solidago , Acetilcolinesterase , Animais , Ácido Clorogênico/farmacologia , Cromatografia Líquida , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Quercetina/farmacologia , Spodoptera , Espectrometria de Massas em Tandem
20.
BMC Plant Biol ; 21(1): 462, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635057

RESUMO

BACKGROUND: The invasion of Solidago canadensis probably related to polyploidy, which may promotes its potential of sexual reproductive. S. canadensis as an invasive species which rapidly widespread through yield huge numbers of seed, but the mechanism remains unknown. To better understand the advantages of sexual reproduction in hexaploid S. canadensis, transcriptome and small RNA sequencing of diploid and hexaploid cytotypes in flower bud and fruit development stages were performed in this study. RESULTS: The transcriptome analysis showed that in the flower bud stage, 29 DEGs were MADS-box related genes with 14 up-regulated and 15 down-regulated in hexaploid S. canadensis; 12 SPL genes were detected differentially expressed with 5 up-regulated and 7 down-regulated. In the fruit development stage, 26 MADS-box related genes with 20 up-regulated and 6 down-regulated in hexaploid S. canadensis; 5 SPL genes were all up-regulated; 28 seed storage protein related genes with 18 were up-regulated and 10 down-regulated. The weighted gene co-expression network analysis (WGCNA) identified 19 modules which consisted of co-expressed DEGs with functions such as sexual reproduction, secondary metabolism and transcription factors. Furthermore, we discovered 326 miRNAs with 67 known miRNAs and 259 novel miRNAs. Some of miRNAs, such as miR156, miR156a and miR156f, which target the sexual reproduction related genes. CONCLUSION: Our study provides a global view of the advantages of sexual reproduction in hexaploid S. canadensis based on the molecular mechanisms, which may promote hexaploid S. canadensis owing higher yield and fruit quality in the process of sexual reproduction and higher germination rate of seeds, and finally conductive to diffusion, faster propagation process and enhanced invasiveness.


Assuntos
Espécies Introduzidas , MicroRNAs/genética , Poliploidia , RNA Mensageiro/genética , Reprodução/genética , Reprodução/fisiologia , Solidago/genética , Solidago/fisiologia , China , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA