Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 470
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(3): 454-470.e18, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004459

RESUMO

Metagenomic inferences of bacterial strain diversity and infectious disease transmission studies largely assume a dominant, within-individual haplotype. We hypothesize that within-individual bacterial population diversity is critical for homeostasis of a healthy microbiome and infection risk. We characterized the evolutionary trajectory and functional distribution of Staphylococcus epidermidis-a keystone skin microbe and opportunistic pathogen. Analyzing 1,482 S. epidermidis genomes from 5 healthy individuals, we found that skin S. epidermidis isolates coalesce into multiple founder lineages rather than a single colonizer. Transmission events, natural selection, and pervasive horizontal gene transfer result in population admixture within skin sites and dissemination of antibiotic resistance genes within-individual. We provide experimental evidence for how admixture can modulate virulence and metabolism. Leveraging data on the contextual microbiome, we assess how interspecies interactions can shape genetic diversity and mobile gene elements. Our study provides insights into how within-individual evolution of human skin microbes shapes their functional diversification.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Interações entre Hospedeiro e Microrganismos/genética , Microbiota/genética , Polimorfismo de Nucleotídeo Único , Pele/microbiologia , Staphylococcus epidermidis/genética , Adulto , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus epidermidis/patogenicidade , Virulência/genética , Adulto Jovem
2.
Proc Natl Acad Sci U S A ; 119(31): e2123017119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881802

RESUMO

Staphylococcus aureus is an opportunistic pathogen and chief among bloodstream-infecting bacteria. S. aureus produces an array of human-specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes following infection with S. aureus using RNA-sequencing (RNA-Seq). We found that the overall transcriptional response to S. aureus was weak both in the number of genes and in the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we uncovered that infection with S. aureus resulted in the down-regulation of genes related to innate immune response and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in blood exposed to heat-killed S. aureus or blood infected with the less virulent staphylococcal species Staphylococcus epidermidis. Notably, this signature was also present in patients with S. aureus bacteremia. We identified the master regulator S. aureus exoprotein expression (SaeRS) and the SaeRS-regulated pore-forming toxins as key mediators of the transcriptional suppression. The S. aureus-mediated suppression of chemokine and cytokine transcription was reflected by circulating protein levels in the plasma. Wild-type S. aureus elicited a soluble milieu that was restrictive in the recruitment of human neutrophils compared with strains lacking saeRS. Thus, S. aureus blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of the pathogen during invasive infection.


Assuntos
Interações Hospedeiro-Patógeno , Neutrófilos , Infecções Estafilocócicas , Staphylococcus aureus , Bacteriemia/imunologia , Bacteriemia/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Proteínas Citotóxicas Formadoras de Poros/genética , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Staphylococcus epidermidis/patogenicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Int J Med Microbiol ; 315: 151620, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579524

RESUMO

Staphylococcus epidermidis is part of the commensal microbiota of the skin and mucous membranes, though it can also act as a pathogen in certain scenarios, causing a range of infections, including periprosthetic joint infection (PJI). Transcriptomic profiling may provide insights into mechanisms by which S. epidermidis adapts while in a pathogenic compared to a commensal state. Here, a total RNA-sequencing approach was used to profile and compare the transcriptomes of 19 paired PJI-associated S. epidermidis samples from an in vivo clinical source and grown in in vitro laboratory culture. Genomic comparison of PJI-associated and publicly available commensal-state isolates were also compared. Of the 1919 total transcripts found, 145 were from differentially expressed genes (DEGs) when comparing in vivo or in vitro samples. Forty-two transcripts were upregulated and 103 downregulated in in vivo samples. Of note, metal sequestration-associated genes, specifically those related to staphylopine activity (cntA, cntK, cntL, and cntM), were upregulated in a subset of clinical in vivo compared to laboratory grown in vitro samples. About 70% of the total transcripts and almost 50% of the DEGs identified have not yet been annotated. There were no significant genomic differences between known commensal and PJI-associated S. epidermidis isolates, suggesting that differential genomics may not play a role in S. epidermidis pathogenicity. In conclusion, this study provides insights into phenotypic alterations employed by S epidermidis to adapt to infective and non-infected microenvironments, potentially informing future therapeutic targets for related infections.


Assuntos
Perfilação da Expressão Gênica , Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Staphylococcus epidermidis , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/patogenicidade , Staphylococcus epidermidis/isolamento & purificação , Infecções Relacionadas à Prótese/microbiologia , Humanos , Infecções Estafilocócicas/microbiologia , Feminino , Masculino , Idoso , Transcriptoma , Regulação Bacteriana da Expressão Gênica , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
4.
BMC Microbiol ; 24(1): 215, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890594

RESUMO

BACKGROUND: A multidrug-resistant lineage of Staphylococcus epidermidis named ST215 is a common cause of prosthetic joint infections and other deep surgical site infections in Northern Europe, but is not present elsewhere. The increasing resistance among S. epidermidis strains is a global concern. We used whole-genome sequencing to characterize ST215 from healthcare settings. RESULTS: We completed the genome of a ST215 isolate from a Swedish hospital using short and long reads, resulting in a circular 2,676,787 bp chromosome and a 2,326 bp plasmid. The new ST215 genome was placed in phylogenetic context using 1,361 finished public S. epidermidis reference genomes. We generated 10 additional short-read ST215 genomes and 11 short-read genomes of ST2, which is another common multidrug-resistant lineage at the same hospital. We studied recombination's role in the evolution of ST2 and ST215, and found multiple recombination events averaging 30-50 kb. By comparing the results of antimicrobial susceptibility testing for 31 antimicrobial drugs with the genome content encoding antimicrobial resistance in the ST215 and ST2 isolates, we found highly similar resistance traits between the isolates, with 22 resistance genes being shared between all the ST215 and ST2 genomes. The ST215 genome contained 29 genes that were historically identified as virulence genes of S. epidermidis ST2. We established that in the nucleotide sequence stretches identified as recombination events, virulence genes were overrepresented in ST215, while antibiotic resistance genes were overrepresented in ST2. CONCLUSIONS: This study features the extensive antibiotic resistance and virulence gene content in ST215 genomes. ST215 and ST2 lineages have similarly evolved, acquiring resistance and virulence through genomic recombination. The results highlight the threat of new multidrug-resistant S. epidermidis lineages emerging in healthcare settings.


Assuntos
Antibacterianos , Infecção Hospitalar , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Filogenia , Infecções Estafilocócicas , Staphylococcus epidermidis , Sequenciamento Completo do Genoma , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus epidermidis/patogenicidade , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Humanos , Infecções Estafilocócicas/microbiologia , Infecção Hospitalar/microbiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Suécia , Plasmídeos/genética , Recombinação Genética
5.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443349

RESUMO

Ulva sp. is known to be a source of bioactive compounds such as ulvans, but to date, their biological activity on skin commensal and/or opportunistic pathogen bacteria has not been reported. In this study, the effects of poly- and oligosaccharide fractions produced by enzyme-assisted extraction and depolymerization were investigated, for the first time in vitro, on cutaneous bacteria: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes. At 1000 µg/mL, poly- and oligosaccharide fractions did not affect the growth of the bacteria regarding their generation time. Polysaccharide Ulva sp. fractions at 1000 µg/mL did not alter the bacterial biofilm formation, while oligosaccharide fractions modified S. epidermidis and C. acnes biofilm structures. None of the fractions at 1000 µg/mL significantly modified the cytotoxic potential of S. epidermidis and S. aureus towards keratinocytes. However, poly- and oligosaccharide fractions at 1000 µg/mL induced a decrease in the inflammatory potential of both acneic and non-acneic C. acnes strains on keratinocytes of up to 39.8%; the strongest and most significant effect occurred when the bacteria were grown in the presence of polysaccharide fractions. Our research shows that poly- and oligosaccharide Ulva sp. fractions present notable biological activities on cutaneous bacteria, especially towards C. acnes acneic and non-acneic strains, which supports their potential use for dermo-cosmetic applications.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pele/microbiologia , Ulva/química , Bactérias/patogenicidade , Relação Dose-Resposta a Droga , Propionibacteriaceae/efeitos dos fármacos , Propionibacteriaceae/crescimento & desenvolvimento , Propionibacteriaceae/patogenicidade , Propionibacteriaceae/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/patogenicidade , Staphylococcus epidermidis/fisiologia , Virulência/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-31818825

RESUMO

Infection is correlated with increased risk of neurodevelopmental sequelae in preterm infants. In modeling neonatal brain injury, Toll-like receptor agonists have often been used to mimic infections and induce inflammation. Using the most common cause of bacteremia in preterm infants, Staphylococcus epidermidis, we present a more clinically relevant neonatal mouse model that addresses the combined effects of bacterial infection together with subsequent hypoxic-ischemic brain insult. Currently, there is no neuroprotective treatment for the preterm population. Hence, we tested the neuroprotective effects of vancomycin with and without adjunct therapy using the anti-inflammatory agent pentoxifylline. We characterized the effects of S. epidermidis infection on the inflammatory response in the periphery and the brain, as well as the physiological changes in the central nervous system that might affect neurodevelopmental outcomes. Intraperitoneal injection of postnatal day 4 mice with a live clinical isolate of S. epidermidis led to bacteremia and induction of proinflammatory cytokines in the blood, as well as transient elevations of neutrophil and monocyte chemotactic cytokines and caspase 3 activity in the brain. When hypoxia-ischemia was induced postinfection, more severe brain damage was observed in infected animals than in saline-injected controls. This infection-induced inflammation and potentiated brain injury was inoculum dose dependent and was alleviated by the antibiotic vancomycin. Pentoxifylline did not provide any additional neuroprotective effect. Thus, we show for the first time that live S. epidermidis potentiates hypoxic-ischemic preterm brain injury and that peripheral inhibition of inflammation with antibiotics, such as vancomycin, reduces the extent of brain injury.


Assuntos
Hipóxia-Isquemia Encefálica/microbiologia , Hipóxia-Isquemia Encefálica/prevenção & controle , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/patogenicidade , Vancomicina/uso terapêutico , Animais , Animais Recém-Nascidos , Glicemia/efeitos dos fármacos , Lesões Encefálicas , Feminino , Recém-Nascido Prematuro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/microbiologia , Sepse/prevenção & controle
7.
Int J Med Sci ; 17(12): 1833-1839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714086

RESUMO

Catheter-related bloodstream infections (CRBSIs) due to pathogenic microorganisms pose a major threat to patients requiring parenteral nutrition (PN). Additives contained in medicines and foods have antiproliferative and bacteriostatic effects on pathogenic microorganisms. Therefore, PN solutions containing additives may also have an antibacterial effect. However, so far, there have been no reports on or observations of a PN solution with bactericidal activity. In this study, we assessed several nutrition solutions with antimicrobial activities and investigated their effects on pathogenic microorganisms colonizing catheter lumens. We selected the highly acidic Plas-Amino® (PA), which contains a large amount of sodium bisulfite as a preservative and potentially has an antimicrobial effect. In this study, we used the following pathogenic bacteria as the main causatives of CRBSIs: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Serratia marcescens, Pseudomonas aeruginosa, and Candida albicans. We then created a catheter lumen microorganism contamination model and evaluated the antibacterial effect of PA; we found that all bacteria in the control group grew significantly in the catheter lumen in a time-dependent manner at 48 and 72 h. On the other hand, we demonstrated that PA has bactericidal effects on S. aureus, S. epidermidis, B. cereus, S. marcescens, and P. aeruginosa in the catheter lumen and confirmed that it has a remarkable antiproliferative effect on C. albicans. Hence, we concluded that highly acidic PN solutions that contain a preservative like sodium bisulfite have bactericidal and growth inhibition effects on microorganisms in the catheter lumens of patients with CRBSIs and patients with totally implantable central venous access devices, in whom it is difficult to remove the catheter.


Assuntos
Antibacterianos/farmacologia , Infecções Relacionadas a Cateter/tratamento farmacológico , Soluções de Nutrição Parenteral/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/patologia , Catéteres/microbiologia , Proliferação de Células/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/patogenicidade , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/patogenicidade , Sulfitos/farmacologia
8.
Adv Exp Med Biol ; 1282: 105-114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32034730

RESUMO

In this study, we explored the effect of three lactic acid bacteria (LAB), i.e. Enterococcus sp CM9, Enterococcus sp CM18 and Enterococcus faecium H3, and their supernatants, on seven biofilm-forming pathogenic strains isolated from human urinary tract or nose infections. By quantitative biofilm production assay, a strong adherence ability of Enterococcus sp CM9 and Enterococcus sp CM18 was revealed while E. faecium H3 resulted to be moderately adherent. Inhibition tests demonstrated an antimicrobial activity of LAB against pathogens.The presence of cell free supernatant (CFS) of CM9 and CM18 strains significantly decreased the adhesion of S. aureus 10,850, S. epidermidis 4,296 and E. coli FSL24. The CFS of H3 strain was effective against S. epidermidis 4,296 and P. aeruginosa PA1FSL biofilms only. Biofilm formation of K. pneumoniae Kp20FSL, A. baumannii AB8FSL and ESBL+ E. coli FS101570 have not been affected by any CSF while P. aeruginosa PA1FSL biofilm increase in presence of CM9 and CM18 CFS.Confocal Laser Scanning Microscopy revealed that K. pneumoniae Kp20FSL biofilm was inhibited by Enterococcus sp CM9, when grown together.Our results suggest that the LAB strains and/or their bacteriocins can be considered as potential tools to control biofilm formation of some bacterial pathogens.


Assuntos
Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Enterococcus/crescimento & desenvolvimento , Enterococcus/fisiologia , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/crescimento & desenvolvimento , Bacteriocinas/metabolismo , Enterococcus/metabolismo , Escherichia coli/patogenicidade , Humanos , Staphylococcus aureus/patogenicidade , Staphylococcus epidermidis/patogenicidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-30858217

RESUMO

Dalbavancin is a lipoglycopeptide with potent activity against Gram-positive microorganisms, a long half-life, a favorable safety profile, and a high concentration in bone, which makes it an interesting alternative for treatment of osteoarticular infections. We performed a multicentric retrospective study of all patients with an osteoarticular infection (septic arthritis, spondylodiscitis, osteomyelitis, or orthopedic implant-related infection) treated with at least one dose of dalbavancin between 2016 and 2017 in 30 institutions in Spain. In order to evaluate the response, patients with or without an orthopedic implant were separated. A total of 64 patients were included. Staphylococcus epidermidis and Staphylococcus aureus were the most frequent microorganisms. The reasons for switching to dalbavancin were simplification (53.1%), adverse events (25%), or failure (21.9%). There were 7 adverse events, and no patient had to discontinue dalbavancin. In 45 cases, infection was related to an orthopedic implant. The implant material was retained in 23 cases, including that in 15 (65.2%) patients that were classified as cured and 8 (34.8%) that presented improvement. In 21 cases, the implants were removed, including those in 16 (76.2%) cases that were considered successes, 4 (19%) cases were considered improved, and 1 (4.8%) case that was considered a failure. Among the 19 cases without implants, 14 (73.7%) were considered cured, 3 (15.8%) were considered improved, and 2 (10.5%) were considered failures. The results show that dalbavancin is a well-tolerated antibiotic, even when >2 doses are administered, and is associated with a high cure rate. These are preliminary data with a short follow-up; therefore, it is necessary to gain more experience and, in the future, to establish the most appropriate dose and frequency.


Assuntos
Osso e Ossos/microbiologia , Articulações/microbiologia , Osteomielite/microbiologia , Teicoplanina/análogos & derivados , Idoso , Feminino , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/patogenicidade , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Osteomielite/tratamento farmacológico , Staphylococcus aureus , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/patogenicidade , Teicoplanina/uso terapêutico
10.
PLoS Pathog ; 13(2): e1006153, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28151994

RESUMO

Bacterial sepsis is a major killer in hospitalized patients. Coagulase-negative staphylococci (CNS) with the leading species Staphylococcus epidermidis are the most frequent causes of nosocomial sepsis, with most infectious isolates being methicillin-resistant. However, which bacterial factors underlie the pathogenesis of CNS sepsis is unknown. While it has been commonly believed that invariant structures on the surface of CNS trigger sepsis by causing an over-reaction of the immune system, we show here that sepsis caused by methicillin-resistant S. epidermidis is to a large extent mediated by the methicillin resistance island-encoded peptide toxin, PSM-mec. PSM-mec contributed to bacterial survival in whole human blood and resistance to neutrophil-mediated killing, and caused significantly increased mortality and cytokine expression in a mouse sepsis model. Furthermore, we show that the PSM-mec peptide itself, rather than the regulatory RNA in which its gene is embedded, is responsible for the observed virulence phenotype. This finding is of particular importance given the contrasting roles of the psm-mec locus that have been reported in S. aureus strains, inasmuch as our findings suggest that the psm-mec locus may exert effects in the background of S. aureus strains that differ from its original role in the CNS environment due to originally "unintended" interferences. Notably, while toxins have never been clearly implied in CNS infections, our tissue culture and mouse infection model data indicate that an important type of infection caused by the predominant CNS species is mediated to a large extent by a toxin. These findings suggest that CNS infections may be amenable to virulence-targeted drug development approaches.


Assuntos
Toxinas Bacterianas/toxicidade , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/patogenicidade , Animais , Modelos Animais de Doenças , Feminino , Humanos , Resistência a Meticilina , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Virulência/fisiologia
11.
BMC Microbiol ; 19(1): 157, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288755

RESUMO

BACKGROUND: Staphylococcus epidermidis has emerged as an often encountered pathogen responsible for hospital-acquired infections. The aim of present study is to investigate the microbiological characteristic of S. epidermidis isolates isolated from sterile specimens and skin in a Chinese tertiary hospital. METHODS: A total of 223 non-duplicate S. epidermidis were collected from various sterile specimens of inpatients among 10 years in Wenzhou, China. 106 S. epidermidis obtained from the skin (urethral orifices) of healthy volunteers. All isolates were tested for antimicrobial susceptibility. PCR was used to detect the virulence- and resistance-associated genes and 7 housekeeping genes to determine the sequence types (STs) of selected isolates. RESULTS: The resistance rates to antimicrobials tested except linezolid and vancomycin and the prevalence of methicillin-resistant S. epidermidis (MRSE) of S. epidermidis clinical isolates were significantly higher than those among colonized isolates (P < 0.05). The positive rates of virulence-associated genes including aap, sesI, ACME-arcA, IS256, bhp, altE, aae and gehD for S. epidermidis clinical isolates were significantly higher than those for colonized isolate (P < 0.05). A total of 60 STs including 28 from clinical isolates and 32 from colonized isolates were identified by MLST. A novel, rarely encountered clone, ST466, was found to be the second prevalent clone among clinical isolates. The great majority of the S. epidermidis isolates tested (73.86%) belonged to clone complex 2 (CC2). Compared with ST2, ST130, ST20 and ST59 clones, ST466 clone had the highest resistance rate to tetracycline (50.00%), the second highest prevalence of ACME-arcA (65.00%), bhp (30.00%) and qacA/B (65.00%), very low prevalence of carriage of icaA (0.00%) and biofilm formation (0.00%), the lack of sesI and high prevalence of aap, altE and aae (> 90%), which was similar to the characteristics of ST59 clone with one locus difference from ST466. ST466 clone competence with Staphylococcus aureus was relatively stronger, relative to ST2, ST20, ST130 and ST59 clones. CONCLUSION: Taken together, a high-level of genetic diversity was found between clinical and colonized S. epidermidis isolates. A novel ST466 clone with distinct and similar characteristics relative to other prevalent clones, emerging as a prevalent clone in China, should be of major concern.


Assuntos
Infecção Hospitalar , Farmacorresistência Bacteriana Múltipla/genética , Infecções Cutâneas Estafilocócicas , Staphylococcus epidermidis , Fatores de Virulência/genética , Virulência/genética , Adulto , China , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Feminino , Genes Bacterianos , Humanos , Masculino , Infecções Cutâneas Estafilocócicas/epidemiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus epidermidis/patogenicidade , Adulto Jovem
12.
Vox Sang ; 114(3): 189-197, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30834556

RESUMO

BACKGROUND AND OBJECTIVES: In the UK, a significant proportion of red cell units is discarded due to the 30-min rule governing out of temperature control. Studies have shown that repeated warming to ambient temperature has little impact on red cell quality or bacterial growth. We aimed to validate extension of the rule to 60 minutes by investigation of repeated same, and different, day exposures on bacterial growth. MATERIALS AND METHODS: Red cell units were seeded individually at 100-1000 cfu/ml with Yersinia enterocolitica, Serratia liquefaciens, Pseudomonas putida, Staphylococcus epidermidis, Enterobacter cloacae and Bacillus cereus. Test units were exposed to 30°C for 30 or 60 min on a single occasion at days 15, 17 and 21, or thrice on day 15 of a 35-day storage period. A 10-fold increase in bacterial counts in tests versus controls maintained in cold storage was considered indicative of significant bacterial proliferation. RESULTS: Exposure of units to 30°C for up to 60 min had no substantial impact on the growth of bacteria and all mesophiles declined steadily in tests and controls. Only P. putida showed a near significant elevation in count on exposure for 60 min at day 35. CONCLUSIONS: Extension of the out of temperature rule for red cells to 60 min will potentially not compromise patient safety, although exposures to ambient temperatures should be minimized. Units returned to storage must not be reissued for at least 6 hours and not be exposed to ambient temperatures on more than three occasions.


Assuntos
Preservação de Sangue/métodos , Criopreservação/métodos , Eritrócitos/microbiologia , Preservação de Sangue/normas , Criopreservação/normas , Humanos , Guias de Prática Clínica como Assunto , Pseudomonas putida/patogenicidade , Serratia liquefaciens/patogenicidade , Staphylococcus epidermidis/patogenicidade , Temperatura
13.
Acta Derm Venereol ; 99(2): 181-187, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30328471

RESUMO

Staphylococcus epidermidis is an abundant skin commensal capable of activating cutaneous defense responses, such as induction of cytokines and antimicrobial peptides. To permanently colonize human skin and prevent inflammation S. epidermidis needs to control the induction of host defense mediators. We report here that S. epidermidis induces expression of the host regulator protein A20 in human keratinocytes, thereby controlling expression and release of interleukin-1 beta. siRNA-mediated knockdown of A20 expression strongly enhanced the induction of interleukin-1 beta gene expression and protein release in keratinocytes stimulated with S. epidermidis. Furthermore, siRNA-mediated knockdown of A20 resulted in enhanced gene expression and secretion of the antimicrobial peptide human beta-defensin-2 in keratinocytes facing S. epidermidis. Mechanistically, A20 negatively controlled S. epidermidis-induced activation of the transcription factor NF-kappaB. Together, these data indicate that S. epidermidis exploits A20 to attenuate cutaneous defense responses, which may help S. epidermidis to persist on human skin.


Assuntos
Interleucina-1beta/metabolismo , Queratinócitos/microbiologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus epidermidis/patogenicidade , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , beta-Defensinas/metabolismo , Células Cultivadas , Interações Hospedeiro-Patógeno , Humanos , Interleucina-1beta/genética , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Pele/metabolismo , Infecções Cutâneas Estafilocócicas/genética , Infecções Cutâneas Estafilocócicas/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Regulação para Cima , beta-Defensinas/genética
14.
Molecules ; 24(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731408

RESUMO

Staphylococcus aureus and Staphylococcus epidermidis are considered two of the most important pathogens, and their biofilms frequently cause device-associated infections. Microbial biosurfactants recently emerged as a new generation of anti-adhesive and anti-biofilm agents for coating implantable devices to preserve biocompatibility. In this study, R89 biosurfactant (R89BS) was evaluated as an anti-biofilm coating on medical-grade silicone. R89BS is composed of homologues of the mono- (75%) and di-rhamnolipid (25%) families, as evidenced by mass spectrometry analysis. The antimicrobial activity against Staphylococcus spp. planktonic and sessile cells was evaluated by microdilution and metabolic activity assays. R89BS inhibited S. aureus and S. epidermidis growth with minimal inhibitory concentrations (MIC99) of 0.06 and 0.12 mg/mL, respectively and dispersed their pre-formed biofilms up to 93%. Silicone elastomeric discs (SEDs) coated by R89BS simple adsorption significantly counteracted Staphylococcus spp. biofilm formation, in terms of both built-up biomass (up to 60% inhibition at 72 h) and cell metabolic activity (up to 68% inhibition at 72 h). SEM analysis revealed significant inhibition of the amount of biofilm-covered surface. No cytotoxic effect on eukaryotic cells was detected at concentrations up to 0.2 mg/mL. R89BS-coated SEDs satisfy biocompatibility requirements for leaching products. Results indicate that rhamnolipid coatings are effective anti-biofilm treatments and represent a promising strategy for the prevention of infection associated with implantable devices.


Assuntos
Biofilmes/efeitos dos fármacos , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Tensoativos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Próteses e Implantes/efeitos adversos , Próteses e Implantes/microbiologia , Infecções Relacionadas à Prótese/microbiologia , Elastômeros de Silicone/química , Elastômeros de Silicone/farmacologia , Silicones/química , Silicones/farmacologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Staphylococcus epidermidis/patogenicidade , Tensoativos/química
15.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30061380

RESUMO

Staphylococcus epidermidis is a leading cause of infections associated with indwelling medical devices, including prosthetic joint infection. While biofilm formation is assumed to be the main mechanism underlying the chronic infections S. epidermidis causes, we hypothesized that S. epidermidis also evades immune killing, contributing to its pathogenesis. Here, we show that prosthetic joint-associated S. epidermidis isolates can persist intracellularly within human fibroblasts and inside human and mouse osteoblasts. We also show that the intracellularly persisting bacteria reside primarily within acidic phagolysosomes and that over the course of infection, small-colony variants are selected for. Moreover, upon eukaryotic cell death, these bacteria, which can outlive their host, can escape into the extracellular environment, providing them an opportunity to form biofilms on implant surfaces at delayed time points in implant-associated infection. In summary, the acidic phagolysosomes of fibroblasts and osteoblasts serve as reservoirs for chronic or delayed S. epidermidis infection.


Assuntos
Biofilmes/crescimento & desenvolvimento , Fibroblastos/microbiologia , Membranas Intracelulares/microbiologia , Osteoblastos/microbiologia , Infecções Relacionadas à Prótese/fisiopatologia , Infecções Estafilocócicas/fisiopatologia , Staphylococcus epidermidis/patogenicidade , Animais , Humanos , Camundongos
16.
Clin Oral Investig ; 22(7): 2663-2668, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29948278

RESUMO

OBJECTIVE: Staphylococcus epidermidis, as a primary colonizer, is strongly associated with infections of (dental) implants (i.e., peri-implantitis), but little is known about the surface proteome of this bacterium. For the identification of bacterial adhesins, this study investigated the surface proteome of S. epidermidis adhering directly to titanium implant substrata. MATERIALS AND METHODS: S. epidermidis strain ATTC 35984 was cultured either planktonically or on titanium implant specimens. The surface proteomes were isolated by mutanolysin digestion, and proteins were separated by 2D gel electrophoreses to reveal highly expressed proteins only. Protein spots were visualized by silver staining and proteins were identified by mass spectrometry. RESULTS: Surface proteome analyses of S. epidermidis on titanium identified six expressed proteins. Three proteins were highly expressed on the titanium implants including accumulation-associated protein Q8CQD9. These specific proteins could be potential pathogenicity factors of bacteria in peri-implant biofilms. CONCLUSION: For the first time, our study identified S. epidermidis surface proteins, which are expressed after adhesion to titanium implant materials. CLINICAL RELEVANCE: Our study reveals possible candidates for a newly protein-based vaccine against peri-implantitis.


Assuntos
Implantes Dentários/microbiologia , Materiais Dentários/química , Proteínas de Membrana/metabolismo , Staphylococcus epidermidis/metabolismo , Titânio/química , Aderência Bacteriana , Eletroforese em Gel de Poliacrilamida , Proteômica/métodos , Staphylococcus epidermidis/patogenicidade , Propriedades de Superfície
17.
Sensors (Basel) ; 18(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469521

RESUMO

The biofilm-forming microbial species Candida parapsilosis and Staphylococcus epidermidis have been recently linked to serious infections associated with implanted medical devices. We studied microbial biofilms by high resolution scanning electron microscopy (SEM), which allowed us to visualize the biofilm structure, including the distribution of cells inside the extracellular matrix and the areas of surface adhesion. We compared classical SEM (chemically fixed samples) with cryogenic SEM, which employs physical sample preparation based on plunging the sample into various liquid cryogens, as well as high-pressure freezing (HPF). For imaging the biofilm interior, we applied the freeze-fracture technique. In this study, we show that the different means of sample preparation have a fundamental influence on the observed biofilm structure. We complemented the SEM observations with Raman spectroscopic analysis, which allowed us to assess the time-dependent chemical composition changes of the biofilm in vivo. We identified the individual spectral peaks of the biomolecules present in the biofilm and we employed principal component analysis (PCA) to follow the temporal development of the chemical composition.


Assuntos
Infecções Bacterianas/diagnóstico , Biofilmes/crescimento & desenvolvimento , Candida parapsilosis/isolamento & purificação , Staphylococcus epidermidis/isolamento & purificação , Infecções Bacterianas/microbiologia , Candida parapsilosis/patogenicidade , Candida parapsilosis/ultraestrutura , Humanos , Microscopia Eletrônica de Varredura , Análise Espectral Raman , Staphylococcus epidermidis/patogenicidade , Staphylococcus epidermidis/ultraestrutura
18.
Artigo em Inglês | MEDLINE | ID: mdl-27855069

RESUMO

We developed a rat model of methicillin-resistant Staphylococcus epidermidis (MRSE) foreign body-associated osteomyelitis and used it to compare tedizolid alone and in combination with rifampin against rifampin alone, vancomycin plus rifampin, and vancomycin alone. A clinical strain of MRSE was inoculated into the proximal tibia, and a stainless steel wire with a precolonized MRSE biofilm was implanted. Following a 1-week infection period, 92 rats received either no treatment (n = 17) or 14 days of intraperitoneal tedizolid (n = 15), tedizolid plus rifampin (n = 15), rifampin (n = 15), vancomycin plus rifampin (n = 15), or vancomycin (n = 15). Quantitative bone and wire cultures were performed after treatment completion and also 1 week after infection in a separate group of five rats. The median quantity of staphylococci in bone after the 1-week infection period was 4.89 log10 CFU/g bone (interquartile range, 3.83 to 5.33 log10 CFU/g bone); staphylococci were recovered from all associated wires. A median quantity of staphylococci of 3.70 log10 CFU/g bone was detected in bones of untreated control rats after 3 weeks. Quantities of staphylococci in bones of all treatment groups except the group receiving vancomycin alone (2.78 log10 CFU/g) were significantly lower than those for untreated controls, with no staphylococci being detected in the groups receiving rifampin monotherapy, tedizolid-plus-rifampin combination therapy, and vancomycin-plus-rifampin combination therapy. Quantities of staphylococci on wires from all treatment groups that included rifampin were significantly lower than those for untreated controls. No resistance to rifampin, tedizolid, or vancomycin was detected. Tedizolid combined with rifampin was active in a rat model of MRSE foreign body-associated osteomyelitis.


Assuntos
Resistência a Meticilina/efeitos dos fármacos , Organofosfatos/farmacologia , Osteomielite/tratamento farmacológico , Oxazóis/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus epidermidis/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Corpos Estranhos , Masculino , Testes de Sensibilidade Microbiana , Osteomielite/microbiologia , Osteomielite/patologia , Ratos Wistar , Rifampina/farmacologia , Aço Inoxidável , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/patogenicidade , Vancomicina/farmacologia
20.
Int J Med Microbiol ; 307(7): 382-387, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28826573

RESUMO

Staphylococcus epidermidis is a common cause of biomedical device-associated infections. Agr is the major quorum sensing system in staphylococci and regulates virulence factors. Four agr-specificity groups exist in S. epidermidis, and chronic S. epidermidis infections are hypothesised to select for agr-negative phenotypes. Therefore, we investigated S. epidermidis strains from prosthetic joint- and catheter-associated infections to establish i) whether an infection selects for an agr-negative phenotype; ii) the importance of PSMγ and iii) if the agr-specificity group is infection dependent. S. epidermidis nasal isolates from healthy volunteers were used as controls. The distribution of agr-specificity groups was significantly different between infection and control episodes, but did not distinguish between the infection types. PSMγ secretion was used to determine agr-activity and HPLC analysis showed that 44% of prosthetic and 32% of catheter-associated episodes produced no PSMγ in comparison to 8% of the control strains. However, PSMγ expression did not always correlate with RNAIII up-regulation, indicating that PSMγ synthesis is likely influenced by additional post-transcriptional control. The data suggests chronic S. epidermidis infections favour agr-specificity group 1 but the results suggest that they do not select for an agr-negative phenotype. Further studies are required to explore the mechanisms underlying the selection and survival of these S. epidermidis phenotypes isolated from biomedical device-associated infections.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/fisiologia , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Toxinas Bacterianas/análise , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Biomarcadores , RNA Bacteriano/análise , RNA Bacteriano/genética , RNA Bacteriano/fisiologia , Staphylococcus epidermidis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA