Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39348458

RESUMO

The thalamus is organized into nuclei that have distinct input and output connectivities with the cortex. Whereas first-order (FO) nuclei - also called core nuclei - relay input from sensory organs on the body surface and project to primary cortical sensory areas, higher-order (HO) nuclei - matrix nuclei - instead receive their driver input from the cortex and project to secondary and associative areas within cortico-thalamo-cortical loops. Input-dependent processes have been shown to play a crucial role in the emergence of FO thalamic neuron identity from a ground-state HO neuron identity, yet how this identity emerges during development remains unknown. Here, using single-cell RNA sequencing of the developing mouse embryonic thalamus, we show that, although they are born together, HO neurons start differentiating earlier than FO neurons. Within the FO visual thalamus, postnatal peripheral input is crucial for the maturation of excitatory, but not inhibitory, neurons. Our findings reveal different differentiation tempos and input sensitivities of HO and FO neurons, and highlight neuron type-specific molecular differentiation programs in the developing thalamus.


Assuntos
Diferenciação Celular , Neurônios , Tálamo , Animais , Camundongos , Neurônios/metabolismo , Neurônios/citologia , Tálamo/embriologia , Tálamo/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Análise de Célula Única , Regulação da Expressão Gênica no Desenvolvimento , Feminino
2.
Nature ; 586(7828): 281-286, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968276

RESUMO

'Dysbiosis' of the maternal gut microbiome, in response to challenges such as infection1, altered diet2 and stress3 during pregnancy, has been increasingly associated with abnormalities in brain function and behaviour of the offspring4. However, it is unclear whether the maternal gut microbiome influences neurodevelopment during critical prenatal periods and in the absence of environmental challenges. Here we investigate how depletion and selective reconstitution of the maternal gut microbiome influences fetal neurodevelopment in mice. Embryos from antibiotic-treated and germ-free dams exhibited reduced brain expression of genes related to axonogenesis, deficient thalamocortical axons and impaired outgrowth of thalamic axons in response to cell-extrinsic factors. Gnotobiotic colonization of microbiome-depleted dams with a limited consortium of bacteria prevented abnormalities in fetal brain gene expression and thalamocortical axonogenesis. Metabolomic profiling revealed that the maternal microbiome regulates numerous small molecules in the maternal serum and the brains of fetal offspring. Select microbiota-dependent metabolites promoted axon outgrowth from fetal thalamic explants. Moreover, maternal supplementation with these metabolites abrogated deficiencies in fetal thalamocortical axons. Manipulation of the maternal microbiome and microbial metabolites during pregnancy yielded adult offspring with altered tactile sensitivity in two aversive somatosensory behavioural tasks, but no overt differences in many other sensorimotor behaviours. Together, our findings show that the maternal gut microbiome promotes fetal thalamocortical axonogenesis, probably through signalling by microbially modulated metabolites to neurons in the developing brain.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Disbiose/microbiologia , Feto/embriologia , Feto/metabolismo , Microbioma Gastrointestinal/fisiologia , Mães , Animais , Axônios/metabolismo , Encéfalo/citologia , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Simulação por Computador , Disbiose/sangue , Disbiose/patologia , Feminino , Feto/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/microbiologia , Complicações na Gravidez/patologia , Análise de Componente Principal , Tálamo/citologia , Tálamo/embriologia , Tálamo/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(22): e2201355119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35613048

RESUMO

Area-specific axonal projections from the mammalian thalamus shape unique cellular organization in target areas in the adult neocortex. How these axons control neurogenesis and early neuronal fate specification is poorly understood. By using mutant mice lacking the majority of thalamocortical axons, we show that these axons are required for the production and specification of the proper number of layer 4 neurons in primary sensory areas by the neonatal stage. Part of these area-specific roles is played by the thalamus-derived molecule, VGF. Our work reveals that extrinsic cues from sensory thalamic projections have an early role in the formation of cortical cytoarchitecture by enhancing the production and specification of layer 4 neurons.


Assuntos
Axônios , Padronização Corporal , Córtex Cerebral , Neurogênese , Tálamo , Animais , Axônios/fisiologia , Córtex Cerebral/embriologia , Córtex Cerebral/ultraestrutura , Camundongos , Camundongos Mutantes , Vias Neurais , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/fisiologia , Tálamo/embriologia , Tálamo/ultraestrutura
4.
Neurobiol Dis ; 199: 106577, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38914171

RESUMO

Proper topographically organized neural connections between the thalamus and the cerebral cortex are mandatory for thalamus function. Thalamocortical (TC) fiber growth begins during the embryonic period and completes by the third trimester of gestation, so that human neonates at birth have a thalamus with a near-facsimile of adult functional parcellation. Whether congenital neocortical anomaly (e.g., lissencephaly) affects TC connection in humans is unknown. Here, via diffusion MRI fiber-tractography analysis of long-term formalin-fixed postmortem fetal brain diagnosed as lissencephaly in comparison with an age-matched normal one, we found similar topological patterns of thalamic subregions and of internal capsule parcellated by TC fibers. However, lissencephaly fetal brain showed white matter structural changes, including fewer/less organized TC fibers and optic radiations, and much less cortical plate invasion by TC fibers - particularly around the shallow central sulcus. Diffusion MRI fiber tractography of normal fetal brains at 15, 23, and 26 gestational weeks (GW) revealed dynamic volumetric change of each parcellated thalamic subregion, suggesting coupled developmental progress of the thalamus with the corresponding cortex. Moreover, from GW23 and GW26 normal fetal brains, TC endings in the cortical plate could be delineated to reflect cumulative progressive TC invasion of cortical plate. By contrast, lissencephaly brain showed a dramatic decrease in TC invasion of the cortical plate. Our study thus shows the feasibility of diffusion MRI fiber tractography in postmortem long-term formalin-fixed fetal brains to disclose the developmental progress of TC tracts coordinating with thalamic and neocortical growth both in normal and lissencephaly fetal brains at mid-gestational stage.


Assuntos
Córtex Cerebral , Imagem de Tensor de Difusão , Lisencefalia , Vias Neurais , Tálamo , Humanos , Tálamo/diagnóstico por imagem , Tálamo/patologia , Tálamo/embriologia , Córtex Cerebral/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/embriologia , Lisencefalia/patologia , Lisencefalia/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/embriologia , Imagem de Tensor de Difusão/métodos , Feto/patologia , Feto/diagnóstico por imagem , Idade Gestacional , Feminino , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/embriologia , Imagem de Difusão por Ressonância Magnética/métodos
5.
Development ; 147(16)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32675279

RESUMO

Neuronal phenotypes are controlled by terminal selector transcription factors in invertebrates, but only a few examples of such regulators have been provided in vertebrates. We hypothesised that TCF7L2 regulates different stages of postmitotic differentiation in the thalamus, and functions as a thalamic terminal selector. To investigate this hypothesis, we used complete and conditional knockouts of Tcf7l2 in mice. The connectivity and clustering of neurons were disrupted in the thalamo-habenular region in Tcf7l2-/- embryos. The expression of subregional thalamic and habenular transcription factors was lost and region-specific cell migration and axon guidance genes were downregulated. In mice with a postnatal Tcf7l2 knockout, the induction of genes that confer thalamic terminal electrophysiological features was impaired. Many of these genes proved to be direct targets of TCF7L2. The role of TCF7L2 in terminal selection was functionally confirmed by impaired firing modes in thalamic neurons in the mutant mice. These data corroborate the existence of master regulators in the vertebrate brain that control stage-specific genetic programmes and regional subroutines, maintain regional transcriptional network during embryonic development, and induce terminal selection postnatally.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Mitose , Transmissão Sináptica , Tálamo/embriologia , Fator de Transcrição 4/metabolismo , Animais , Camundongos , Camundongos Knockout , Tálamo/citologia , Fator de Transcrição 4/genética
6.
Development ; 146(12)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30872278

RESUMO

The embryonic diencephalon forms integration centers and relay stations in the forebrain. Anecdotal expression studies suggest that the diencephalon contains multiple developmental compartments and subdivisions. Here, we utilized single cell RNA sequencing to profile transcriptomes of dissociated cells from the diencephalon of E12.5 mouse embryos. We identified the divergence of different progenitors, intermediate progenitors, and emerging neurons. By mapping the identified cell groups to their spatial origins, we characterized the molecular features of cell types and cell states arising from various diencephalic domains. Furthermore, we reconstructed the developmental trajectory of distinct cell lineages, and thereby identified the genetic cascades and gene regulatory networks underlying the progression of the cell cycle, neurogenesis and cellular diversification. The analysis provides new insights into the molecular mechanisms underlying the amplification of intermediate progenitor cells in the thalamus. The single cell-resolved trajectories not only confirm a close relationship between the rostral thalamus and prethalamus, but also uncover an unexpected close relationship between the caudal thalamus, epithalamus and rostral pretectum. Our data provide a useful resource for systematic studies of cell heterogeneity and differentiation kinetics within the diencephalon.


Assuntos
Epitálamo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/citologia , Área Pré-Tectal/embriologia , Análise de Célula Única/métodos , Tálamo/embriologia , Animais , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Camundongos , Neurogênese , Análise de Sequência de RNA/métodos , Células-Tronco , Análise Serial de Tecidos
7.
Development ; 146(18)2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31488566

RESUMO

During development, the p75 neurotrophin receptor (p75NTR) is widely expressed in the nervous system where it regulates neuronal differentiation, migration and axonal outgrowth. p75NTR also mediates the survival and death of newly born neurons, with functional outcomes being dependent on both timing and cellular context. Here, we show that knockout of p75NTR from embryonic day 10 (E10) in neural progenitors using a conditional Nestin-Cre p75NTR floxed mouse causes increased apoptosis of progenitor cells. By E14.5, the number of Tbr2-positive progenitor cells was significantly reduced and the rate of neurogenesis was halved. Furthermore, in adult knockout mice, there were fewer cortical pyramidal neurons, interneurons, cholinergic basal forebrain neurons and striatal neurons, corresponding to a relative reduction in volume of these structures. Thalamic midline fusion during early postnatal development was also impaired in Nestin-Cre p75NTR floxed mice, indicating a novel role for p75NTR in the formation of this structure. The phenotype of this strain demonstrates that p75NTR regulates multiple aspects of brain development, including cortical progenitor cell survival, and that expression during early neurogenesis is required for appropriate formation of telencephalic structures.


Assuntos
Prosencéfalo Basal/embriologia , Neocórtex/embriologia , Neostriado/embriologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Tálamo/embriologia , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Proliferação de Células , Sobrevivência Celular , Complexo de Golgi/metabolismo , Interneurônios/metabolismo , Camundongos , Nestina/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Tamanho do Órgão , Células Piramidais/metabolismo
8.
Development ; 145(19)2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30177526

RESUMO

Trio, a member of the Dbl family of guanine nucleotide exchange factors, activates Rac1 downstream of netrin 1/DCC signalling in axon outgrowth and guidance. Although it has been proposed that Trio also activates RhoA, the putative upstream factors remain unknown. Here, we show that Slit2 induces Trio-dependent RhoA activation, revealing a crosstalk between Slit and Trio/RhoA signalling. Consistently, we found that RhoA activity is hindered in vivo in Trio mutant mouse embryos. We next studied the development of the ventral telencephalon and thalamocortical axons, which have been previously shown to be controlled by Slit2. Remarkably, this analysis revealed that Trio knockout (KO) mice show phenotypes that bear strong similarities to the ones that have been reported in Slit2 KO mice in both guidepost corridor cells and thalamocortical axon pathfinding in the ventral telencephalon. Taken together, our results show that Trio induces RhoA activation downstream of Slit2, and support a functional role in ensuring the proper positioning of both guidepost cells and a major axonal tract. Our study indicates a novel role for Trio in Slit2 signalling and forebrain wiring, highlighting its role in multiple guidance pathways as well as in biological functions of importance for a factor involved in human brain disorders.


Assuntos
Padronização Corporal , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Telencéfalo/embriologia , Telencéfalo/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Orientação de Axônios , Axônios/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cones de Crescimento/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos Knockout , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tálamo/embriologia , Tálamo/metabolismo
9.
J Neurosci ; 39(13): 2398-2415, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30692221

RESUMO

Primary cilia are essential for CNS development. In the mouse, they play a critical role in patterning the spinal cord and telencephalon via the regulation of Hedgehog/Gli signaling. However, despite the frequent disruption of this signaling pathway in human forebrain malformations, the role of primary cilia in forebrain morphogenesis has been little investigated outside the telencephalon. Here we studied development of the diencephalon, hypothalamus and eyes in mutant mice in which the Ftm/Rpgrip1l ciliopathy gene is disrupted. At the end of gestation, Ftm-/- fetuses displayed anophthalmia, a reduction of the ventral hypothalamus and a disorganization of diencephalic nuclei and axonal tracts. In Ftm-/- embryos, we found that the ventral forebrain structures and the rostral thalamus were missing. Optic vesicles formed but lacked the optic cups. In Ftm-/- embryos, Sonic hedgehog (Shh) expression was virtually lost in the ventral forebrain but maintained in the zona limitans intrathalamica (ZLI), the mid-diencephalic organizer. Gli activity was severely downregulated but not lost in the ventral forebrain and in regions adjacent to the Shh-expressing ZLI. Reintroduction of the repressor form of Gli3 into the Ftm-/- background restored optic cup formation. Our data thus uncover a complex role of cilia in development of the diencephalon, hypothalamus and eyes via the region-specific control of the ratio of activator and repressor forms of the Gli transcription factors. They call for a closer examination of forebrain defects in severe ciliopathies and for a search for ciliopathy genes as modifiers in other human conditions with forebrain defects.SIGNIFICANCE STATEMENT The Hedgehog (Hh) signaling pathway is essential for proper forebrain development as illustrated by a human condition called holoprosencephaly. The Hh pathway relies on primary cilia, cellular organelles that receive and transduce extracellular signals and whose dysfunctions lead to rare inherited diseases called ciliopathies. To date, the role of cilia in the forebrain has been poorly studied outside the telencephalon. In this paper we study the role of the Ftm/Rpgrip1l ciliopathy gene in mouse forebrain development. We uncover complex functions of primary cilia in forebrain morphogenesis through region-specific modulation of the Hh pathway. Our data call for further examination of forebrain defects in ciliopathies and for a search for ciliopathy genes as modifiers in human conditions affecting forebrain development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Olho/embriologia , Olho/metabolismo , Hipotálamo/embriologia , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Tálamo/embriologia , Tálamo/metabolismo
10.
Dev Neurosci ; 42(5-6): 208-216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33684917

RESUMO

Thalamus is an important sensory relay station: afferent sensory information, except olfactory signals, is transmitted by thalamocortical axons (TCAs) to the cerebral cortex. The pathway choice of TCAs depends on diverse diffusible or substrate-bound guidance cues in the environment. Not only classical guidance cues (ephrins, slits, semaphorins, and netrins), morphogens, which exerts patterning effects during early embryonic development, can also help axons navigate to their targets at later development stages. Here, expression analyses reveal that morphogen Fibroblast growth factor (FGF)-3 is expressed in the chick ventral diencephalon, hypothalamus, during the pathfinding of TCAs. Then, using in vitro analyses in chick explants, we identify a concentration-dependent effect of FGF3 on thalamic axons: attractant 100 ng/mL FGF3 transforms to a repellent at high concentration 500 ng/mL. Moreover, inhibition of FGF3 guidance functions indicates that FGF3 signaling is necessary for the correct navigation of thalamic axons. Together, these studies demonstrate a direct effect for the member of FGF7 subfamily, FGF3, in the axonal pathfinding of TCAs.


Assuntos
Orientação de Axônios/fisiologia , Fator 3 de Crescimento de Fibroblastos/metabolismo , Hipotálamo/metabolismo , Vias Neurais/embriologia , Animais , Córtex Cerebral/embriologia , Embrião de Galinha , Tálamo/embriologia
11.
Cereb Cortex ; 29(4): 1706-1718, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668846

RESUMO

The current model, based on rodent data, proposes that thalamocortical afferents (TCA) innervate the subplate towards the end of cortical neurogenesis. This implies that the laminar identity of cortical neurons is specified by intrinsic instructions rather than information of thalamic origin. In order to determine whether this mechanism is conserved in the primates, we examined the growth of thalamocortical (TCA) and corticofugal afferents in early human and monkey fetal development. In the human, TCA, identified by secretagogin, calbindin, and ROBO1 immunoreactivity, were observed in the internal capsule of the ventral telencephalon as early as 7-7.5 PCW, crossing the pallial/subpallial boundary (PSB) by 8 PCW before the calretinin immunoreactive corticofugal fibers do. Furthermore, TCA were observed to be passing through the intermediate zone and innervating the presubplate of the dorsolateral cortex, and already by 10-12 PCW TCAs were occupying much of the cortex. Observations at equivalent stages in the marmoset confirmed that this pattern is conserved across primates. Therefore, our results demonstrate that in primates, TCAs innervate the cortical presubplate at earlier stages than previously demonstrated by acetylcholinesterase histochemistry, suggesting that pioneer thalamic afferents may contribute to early cortical circuitry that can participate in defining cortical neuron phenotypes.


Assuntos
Córtex Cerebral/embriologia , Neurônios Aferentes/citologia , Tálamo/embriologia , Vias Aferentes/citologia , Vias Aferentes/embriologia , Vias Aferentes/metabolismo , Animais , Callithrix , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Humanos , Neurônios Aferentes/metabolismo , Roedores , Tálamo/citologia , Tálamo/metabolismo
12.
Dev Biol ; 424(1): 62-76, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28219675

RESUMO

The thalamus acts as a central integrator for processing and relaying sensory and motor information to and from the cerebral cortex, and the habenula plays pivotal roles in emotive decision making by modulating dopaminergic and serotonergic circuits. These neural compartments are derived from a common developmental progenitor domain, called prosomere 2, in the caudal forebrain. Thalamic and habenular neurons exhibit distinct molecular profile, neurochemical identity, and axonal circuitry. However, the mechanisms of how their progenitors in prosomere 2 give rise to these two populations of neurons and contribute to the forebrain circuitry remains unclear. In this study, we discovered a previously unrecognized role for Tcf7l2, a transcription factor known as the canonical Wnt nuclear effector and diabetes risk-conferring gene, in establishing neuronal identity and circuits of the caudal forebrain. Using genetic and chemical axon tracers, we showed that efferent axons of the thalamus, known as the thalamocortical axons (TCAs), failed to elongate normally and strayed from their normal course to inappropriate locations in the absence of Tcf7l2. Further experiments with thalamic explants revealed that the pathfinding defects of Tcf7l2-deficient TCAs were associated at least in part with downregulation of guidance receptors Robo1 and Robo2 expression. Moreover, the fasciculus retroflexus, the main habenular output tract, was missing in embryos lacking Tcf7l2. These axonal defects may result from dysregulation of Nrp2 guidance receptor. Strikingly, loss of Tcf7l2 caused a post-mitotic identity switch between thalamic and habenular neurons. Despite normal acquisition of progenitor identity in prosomere 2, Tcf7l2-deficient thalamic neurons adopted a molecular profile of a neighboring forebrain derivative, the habenula. Conversely, habenular neurons failed to maintain their normal post-mitotic neuronal identity and acquired a subset of thalamic neuronal features in the absence of Tcf7l2. Our findings suggest a unique role for Tcf7l2 in generating distinct neuronal phenotypes from homogeneous progenitor population, and provide a better understanding of the mechanism underlying neuronal specification, differentiation, and connectivity of the developing caudal forebrain.


Assuntos
Habenula/citologia , Habenula/embriologia , Rede Nervosa/metabolismo , Neurônios/metabolismo , Tálamo/citologia , Tálamo/embriologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Orientação de Axônios , Axônios/metabolismo , Biomarcadores/metabolismo , Padronização Corporal , Diencéfalo/embriologia , Diencéfalo/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Mitose , Mutação/genética , Ligação Proteica , Células-Tronco/metabolismo , Transcrição Gênica
13.
Development ; 142(1): 140-50, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25480914

RESUMO

The phenotype of excitatory cerebral cortex neurons is specified at the progenitor level, orchestrated by various intrinsic and extrinsic factors. Here, we provide evidence for a subcortical contribution to cortical progenitor regulation by thalamic axons via ephrin A5-EphA4 interactions. Ephrin A5 is expressed by thalamic axons and represents a high-affinity ligand for EphA4 receptors detected in cortical precursors. Recombinant ephrin A5-Fc protein, as well as ephrin A ligand-expressing, thalamic axons affect the output of cortical progenitor division in vitro. Ephrin A5-deficient mice show an altered division mode of radial glial cells (RGCs) accompanied by increased numbers of intermediate progenitor cells (IPCs) and an elevated neuronal production for the deep cortical layers at E13.5. In turn, at E16.5 the pool of IPCs is diminished, accompanied by reduced rates of generated neurons destined for the upper cortical layers. This correlates with extended infragranular layers at the expense of superficial cortical layers in adult ephrin A5-deficient and EphA4-deficient mice. We suggest that ephrin A5 ligands imported by invading thalamic axons interact with EphA4-expressing RGCs, thereby contributing to the fine-tuning of IPC generation and thus the proper neuronal output for cortical layers.


Assuntos
Córtex Cerebral/citologia , Efrina-A5/metabolismo , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Receptor EphA4/metabolismo , Células-Tronco/metabolismo , Tálamo/citologia , Animais , Axônios/metabolismo , Contagem de Células , Divisão Celular , Embrião de Mamíferos/citologia , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Efrina-A5/deficiência , Ligantes , Camundongos Endogâmicos C57BL , Neurogênese , Receptor EphA4/deficiência , Transdução de Sinais , Células-Tronco/citologia , Tálamo/embriologia , Tálamo/metabolismo
14.
Cereb Cortex ; 27(2): 1137-1148, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26656997

RESUMO

A key step in the development of the cerebral cortex is a patterning process, which subdivides the telencephalon into several molecularly distinct domains and is critical for cortical arealization. This process is dependent on a complex network of interactions between signaling molecules of the Fgf and Wnt gene families and the Gli3 transcription factor gene, but a better knowledge of the molecular basis of the interplay between these factors is required to gain a deeper understanding of the genetic circuitry underlying telencephalic patterning. Using DNA-binding and reporter gene assays, we here investigate the possibility that Gli3 and these signaling molecules interact by directly regulating each other's expression. We show that Fgf signaling is required for Wnt8b enhancer activity in the cortical hem, whereas Wnt/ß-catenin signaling represses Fgf17 forebrain enhancer activity. In contrast, Fgf and Wnt/ß-catenin signaling cooperate to regulate Gli3 expression. Taken together, these findings indicate that mutual interactions between Gli3, Wnt8b, and Fgf17 are crucial elements of the balance between these factors thereby conferring robustness to the patterning process. Hence, our study provides a framework for understanding the genetic circuitry underlying telencephalic patterning and how defects in this process can affect the formation of cortical areas.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Telencéfalo/fisiologia , Proteínas Wnt/fisiologia , Proteína Gli3 com Dedos de Zinco/fisiologia , Animais , Feminino , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Gravidez , Prosencéfalo/metabolismo , Prosencéfalo/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Telencéfalo/embriologia , Telencéfalo/metabolismo , Tálamo/embriologia , Tálamo/fisiologia , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , Proteína Gli3 com Dedos de Zinco/genética
15.
Dev Dyn ; 246(10): 749-758, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28685891

RESUMO

BACKGROUND: The neurons contributing to thalamic nuclei are derived from at least two distinct progenitor domains: the caudal (cTH) and rostral (rTH) populations of thalamic progenitors. These neural compartments exhibit unique neurogenic patterns, and the molecular mechanisms underlying the acquisition of neurotransmitter identity remain largely unclear. RESULTS: T-cell acute lymphocytic leukemia protein 1 (Tal1) was expressed in the early postmitotic cells in the rTH domain, and its expression was maintained in mature thalamic neurons in the ventrolateral geniculate nucleus (vLG) and the intergeniculate leaflet (IGL). To investigate a role of Tal1 in thalamic development, we used a newly generated mouse line driving Cre-mediated recombination in the rTH domain. Conditional deletion of Tal1 did not alter regional patterning in the developing diencephalon. However, in the absence of Tal1, rTH-derived thalamic neurons failed to maintain their postmitotic neuronal features, including neurotransmitter profile. Tal1-deficient thalamic neurons lost their GABAergic markers such as Gad1, Npy, and Penk in IGL/vLG. These defects may be associated at least in part with down-regulation of Nkx2.2, which is known as a critical regulator of rTH-derived GABAergic neurons. CONCLUSIONS: Our results demonstrate that Tal1 plays an essential role in regulating neurotransmitter phenotype in the developing thalamic nuclei. Developmental Dynamics 246:749-758, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Neurotransmissores , Proteína 1 de Leucemia Linfocítica Aguda de Células T/fisiologia , Núcleos Talâmicos/citologia , Animais , Proteína Homeobox Nkx-2.2 , Camundongos , Células-Tronco , Núcleos Talâmicos/embriologia , Tálamo/citologia , Tálamo/embriologia
16.
Hum Mol Genet ; 24(9): 2578-93, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25631876

RESUMO

Primary cilia are complex subcellular structures that play key roles during embryogenesis by controlling the cellular response to several signaling pathways. Defects in the function and/or structure of primary cilia underlie a large number of human syndromes collectively referred to as ciliopathies. Often, ciliopathies are associated with mental retardation (MR) and malformation of the corpus callosum. However, the possibility of defects in other forebrain axon tracts, which could contribute to the cognitive disorders of these patients, has not been explored. Here, we investigate the formation of the corticothalamic/thalamocortical tracts in mice mutant for Rfx3, which regulates the expression of many genes involved in ciliogenesis and cilia function. Using DiI axon tracing and immunohistochemistry experiments, we show that some Rfx3(-/-) corticothalamic axons abnormally migrate toward the pial surface of the ventral telencephalon (VT). Some thalamocortical axons (TCAs) also fail to leave the diencephalon or abnormally project toward the amygdala. Moreover, the Rfx3(-/-) VT displays heterotopias containing attractive guidance cues and expressing the guidance molecules Slit1 and Netrin1. Finally, the abnormal projection of TCAs toward the amygdala is also present in mice carrying a mutation in the Inpp5e gene, which is mutated in Joubert Syndrome and which controls cilia signaling and stability. The presence of identical thalamocortical malformations in two independent ciliary mutants indicates a novel role for primary cilia in the formation of the corticothalamic/thalamocortical tracts by establishing the correct cellular environment necessary for its development.


Assuntos
Padronização Corporal/genética , Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/genética , Telencéfalo/metabolismo , Tálamo/metabolismo , Fatores de Transcrição/genética , Animais , Embrião de Mamíferos , Homozigoto , Imuno-Histoquímica , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais , Neurônios/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fatores de Transcrição de Fator Regulador X , Telencéfalo/embriologia , Telencéfalo/patologia , Tálamo/embriologia , Tálamo/patologia , Proteína Gli3 com Dedos de Zinco
17.
Development ; 141(10): 2075-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24803655

RESUMO

Thalamocortical axons (TCAs) pass through the prethalamus in the first step of their neural circuit formation. Although it has been supposed that the prethalamus is an intermediate target for thalamocortical projection formation, much less is known about the molecular mechanisms of this targeting. Here, we demonstrated the functional implications of the prethalamus in the formation of this neural circuit. We show that Olig2 transcription factor, which is expressed in the ventricular zone (VZ) of prosomere 3, regulates prethalamus formation, and loss of Olig2 results in reduced prethalamus size in early development, which is accompanied by expansion of the thalamic eminence (TE). Extension of TCAs is disorganized in the Olig2-KO dorsal thalamus, and initial elongation of TCAs is retarded in the Olig2-KO forebrain. Microarray analysis demonstrated upregulation of several axon guidance molecules, including Epha3 and Epha5, in the Olig2-KO basal forebrain. In situ hybridization showed that the prethalamus in the wild type excluded the expression of Epha3 and Epha5, whereas loss of Olig2 resulted in reduction of this Ephas-negative area and the corresponding expansion of the Ephas-positive TE. Dissociated cultures of thalamic progenitor cells demonstrated that substrate-bound EphA3 suppresses neurite extension from dorsal thalamic neurons. These results indicate that Olig2 is involved in correct formation of the prethalamus, which leads to exclusion of the EphA3-expressing region and is crucial for proper TCA formation. Our observation is the first report showing the molecular mechanisms underlying how the prethalamus acts on initial thalamocortical projection formation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Rede Nervosa/embriologia , Proteínas do Tecido Nervoso/fisiologia , Vias Neurais/embriologia , Tálamo/embriologia , Animais , Axônios/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Embrião de Galinha , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/genética , Vias Neurais/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Fatores de Transcrição/fisiologia
18.
EMBO Rep ; 16(7): 851-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25947198

RESUMO

Controlling the axon growth rate is fundamental when establishing brain connections. Using the thalamocortical system as a model, we previously showed that spontaneous calcium activity influences the growth rate of thalamocortical axons by regulating the transcription of Robo1 through an NF-κB-binding site in its promoter. Robo1 acts as a brake on the growth of thalamocortical axons in vivo. Here, we have identified the Netrin-1 receptor DCC as an accelerator for thalamic axon growth. Dcc transcription is regulated by spontaneous calcium activity in thalamocortical neurons and activating DCC signaling restores normal axon growth in electrically silenced neurons. Moreover, we identified an AP-1-binding site in the Dcc promoter that is crucial for the activity-dependent regulation of this gene. In summary, we have identified the Dcc gene as a novel downstream target of spontaneous calcium activity involved in axon growth. Together with our previous data, we demonstrate a mechanism to control axon growth that relies on the activity-dependent regulation of two functionally opposed receptors, Robo1 and DCC. These two proteins establish a tight and efficient means to regulate activity-guided axon growth in order to correctly establish neuronal connections during development.


Assuntos
Axônios/fisiologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Tálamo/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Axônios/ultraestrutura , Sítios de Ligação , Cálcio/metabolismo , Células Cultivadas , Receptor DCC , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Cones de Crescimento/fisiologia , Camundongos , NF-kappa B/metabolismo , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Neurônios/fisiologia , Regiões Promotoras Genéticas , Receptores de Superfície Celular/química , Transdução de Sinais , Tálamo/citologia , Tálamo/embriologia , Proteínas Supressoras de Tumor/química
19.
Cereb Cortex ; 26(7): 3323-34, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27170656

RESUMO

Celsr3 and Fzd3 regulate the development of reciprocal thalamocortical projections independently of their expression in cortical or thalamic neurons. To understand this cell non autonomous mechanism further, we tested whether Celsr3 and Fzd3 could act via Isl1-positive guidepost cells. Isl1-positive cells appear in the forebrain at embryonic day (E) 9.5-E10.5 and, from E12.5, they form 2 contingents in ventral telencephalon and prethalamus. In control mice, corticothalamic axons run in the ventral telencephalic corridor in close contact with Isl1-positive cells. When Celsr3 or Fzd3 is inactivated in Isl1-expressing cells, corticofugal fibers stall and loop in the ventral telencephalic corridor of high Isl1 expression, and thalamic axons fail to cross the diencephalon-telencephalon junction (DTJ). At E12.5, before thalamic and cortical axons emerge, pioneer projections from Isl1-positive cells cross the DTJ from both sides in control but not mutant embryos. These early projections appear to act like a bridge to guide later growing thalamic axons through the DTJ. Our data suggest that Celsr3 and Fzd3 orchestrate the formation of a scaffold of pioneer neurons and their axons. This scaffold extends from prethalamus to ventral telencephalon and subcortex, and steers reciprocal corticothalamic fibers.


Assuntos
Axônios/metabolismo , Caderinas/metabolismo , Córtex Cerebral/embriologia , Receptores Frizzled/metabolismo , Receptores de Superfície Celular/metabolismo , Tálamo/embriologia , Animais , Caderinas/genética , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Receptores Frizzled/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos Transgênicos , Crescimento Neuronal/fisiologia , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Receptores de Superfície Celular/genética , Tálamo/citologia , Tálamo/metabolismo , Técnicas de Cultura de Tecidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
J Neurosci ; 35(38): 13053-63, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400936

RESUMO

Glutamatergic principal neurons, GABAergic interneurons and thalamocortical axons (TCAs) are essential elements of the cerebrocortical network. Principal neurons originate locally from radial glia and intermediate progenitors (IPCs), whereas interneurons and TCAs are of extrinsic origin. Little is known how the assembly of these elements is coordinated. C-X-C motif chemokine 12 (CXCL12), which is known to guide axons outside the neural tube and interneurons in the cortex, is expressed in the meninges and IPCs. Using mouse genetics, we dissected the influence of IPC-derived CXCL12 on TCAs and interneurons by showing that Cxcl12 ablation in IPCs, leaving meningeal Cxcl12 intact, attenuates intracortical TCA growth and disrupts tangential interneuron migration in the subventricular zone. In accordance with strong CXCR4 expression in the forming thalamus and TCAs, we identified a CXCR4-dependent growth-promoting effect of CXCL12 on TCAs in thalamus explants. Together, our findings indicate a cell-autonomous role of CXCR4 in promoting TCA growth. We propose that CXCL12 signals from IPCs link cortical neurogenesis to the progression of TCAs and interneurons spatially and temporally. Significance statement: The cerebral cortex exerts higher brain functions including perceptual and emotional processing. Evolutionary expansion of the mammalian cortex is mediated by intermediate progenitors, transient amplifying cells generating cortical excitatory neurons. During the peak period of cortical neurogenesis, migrating precursors of inhibitory interneurons originating in subcortical areas and thalamic axons invade the cortex. Although defects in the assembly of cortical network elements cause neurological and mental disorders, little is known how neurogenesis, interneuron recruitment, and axonal ingrowth are coordinated. We demonstrate that intermediate progenitors release the chemotactic cytokine CXCL12 to promote intracortical interneuron migration and growth of thalamic axons via the cognate receptor CXCR4. This paracrine signal may ensure thalamocortical connectivity and dispersion of inhibitory neurons in the rapidly growing cortex.


Assuntos
Córtex Cerebral/citologia , Quimiocina CXCL12/metabolismo , Interneurônios/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Tálamo/citologia , Animais , Axônios/metabolismo , Córtex Cerebral/embriologia , Quimiocina CXCL12/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Filamentos Intermediários/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso , Vias Neurais/fisiologia , Técnicas de Cultura de Órgãos , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Tálamo/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA