RESUMO
Per- and polyfluoroalkyl substances (PFAS), particularly the perfluorinated ones, are recalcitrant to biodegradation. By integrating an enrichment culture of reductive defluorination with biocompatible electrodes for the electrochemical process, a deeper defluorination of a C6-perfluorinated unsaturated PFAS was achieved compared to the biological or electrochemical system alone. Two synergies in the bioelectrochemical system were identified: i) The in-series microbial-electrochemical defluorination and ii) the electrochemically enabled microbial defluorination of intermediates. These synergies at the material-microbe interfaces surpassed the limitation of microbial defluorination and further turned the biotransformation end products into less fluorinated products, which could be less toxic and more biodegradable in the environment. This material-microbe hybrid system brings opportunities in the bioremediation of PFAS driven by renewable electricity and warrants future research on mechanistic understanding of defluorinating and electroactive microorganisms at the material-microbe interface for system optimizations.
Assuntos
Biodegradação Ambiental , Anaerobiose , Halogenação , Eletrodos/microbiologia , Fluorocarbonos/metabolismo , Fluorocarbonos/química , Técnicas Eletroquímicas/métodos , Bactérias/metabolismoRESUMO
Biomolecular condensation is a key mechanism for organizing cellular processes in a spatiotemporal manner. The phase-transition nature of this process defines a density transition of the whole solution system. However, the physicochemical features and the electrochemical functions brought about by condensate formation are largely unexplored. We here illustrate the fundamental principles of how the formation of condensates generates distinct electrochemical features in the dilute phase, the dense phase and the interfacial region. We discuss the principles by which these distinct chemical and electrochemical environments can modulate biomolecular functions through the effects brought about by water, ions and electric fields. We delineate the potential impacts on cellular behaviors due to the modulation of chemical and electrochemical environments through condensate formation. This Perspective is intended to serve as a general road map to conceptualize condensates as electrochemically active entities and to assess their functions from a physical chemistry aspect.
Assuntos
Condensados Biomoleculares , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Transição de Fase , Eletroquímica , Água/química , Humanos , Técnicas Eletroquímicas/métodos , Íons/química , Íons/metabolismoRESUMO
Electrode arrays that interface with peripheral nerves are used in the diagnosis and treatment of neurological disorders; however, they require complex placement surgeries that carry a high risk of nerve injury. Here we leverage recent advances in soft robotic actuators and flexible electronics to develop highly conformable nerve cuffs that combine electrochemically driven conducting-polymer-based soft actuators with low-impedance microelectrodes. Driven with applied voltages as small as a few hundreds of millivolts, these cuffs allow active grasping or wrapping around delicate nerves. We validate this technology using in vivo rat models, showing that the cuffs form and maintain a self-closing and reliable bioelectronic interface with the sciatic nerve of rats without the use of surgical sutures or glues. This seamless integration of soft electrochemical actuators with neurotechnology offers a path towards minimally invasive intraoperative monitoring of nerve activity and high-quality bioelectronic interfaces.
Assuntos
Microeletrodos , Nervos Periféricos , Animais , Ratos , Nervos Periféricos/fisiologia , Nervo Isquiático/fisiologia , Ratos Sprague-Dawley , Técnicas Eletroquímicas/métodosRESUMO
Continuous and in situ detection of biomarkers in biofluids (for example, sweat) can provide critical health data but is limited by biofluid accessibility. Here we report a sensor design that enables in situ detection of solid-state biomarkers ubiquitously present on human skin. We deploy an ionic-electronic bilayer hydrogel to facilitate the sequential dissolution, diffusion and electrochemical reaction of solid-state analytes. We demonstrate continuous monitoring of water-soluble analytes (for example, solid lactate) and water-insoluble analytes (for example, solid cholesterol) with ultralow detection limits of 0.51 and 0.26 nmol cm-2, respectively. Additionally, the bilayer hydrogel electrochemical interface reduces motion artefacts by a factor of three compared with conventional liquid-sensing electrochemical interfaces. In a clinical study, solid-state epidermal biomarkers measured by our stretchable wearable sensors showed a high correlation with biomarkers in human blood and dynamically correlated with physiological activities. These results present routes to universal platforms for biomarker monitoring without the need for biofluid acquisition.
Assuntos
Biomarcadores , Epiderme , Hidrogéis , Dispositivos Eletrônicos Vestíveis , Biomarcadores/sangue , Biomarcadores/análise , Humanos , Hidrogéis/química , Epiderme/metabolismo , Eletrônica , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodosRESUMO
With advances in our understanding regarding the neurochemical underpinnings of neurological and psychiatric diseases, there is an increased demand for advanced computational methods for neurochemical analysis. Despite having a variety of techniques for measuring tonic extracellular concentrations of neurotransmitters, including voltammetry, enzyme-based sensors, amperometry, and in vivo microdialysis, there is currently no means to resolve concentrations of structurally similar neurotransmitters from mixtures in the in vivo environment with high spatiotemporal resolution and limited tissue damage. Since a variety of research and clinical investigations involve brain regions containing electrochemically similar monoamines, such as dopamine and norepinephrine, developing a model to resolve the respective contributions of these neurotransmitters is of vital importance. Here we have developed a deep learning network, DiscrimNet, a convolutional autoencoder capable of accurately predicting individual tonic concentrations of dopamine, norepinephrine, and serotonin from both in vitro mixtures and the in vivo environment in anesthetized rats, measured using voltammetry. The architecture of DiscrimNet is described, and its ability to accurately predict in vitro and unseen in vivo concentrations is shown to vastly outperform a variety of shallow learning algorithms previously used for neurotransmitter discrimination. DiscrimNet is shown to generalize well to data captured from electrodes unseen during model training, eliminating the need to retrain the model for each new electrode. DiscrimNet is also shown to accurately predict the expected changes in dopamine and serotonin after cocaine and oxycodone administration in anesthetized rats in vivo. DiscrimNet therefore offers an exciting new method for real-time resolution of in vivo voltammetric signals into component neurotransmitters.
Assuntos
Aprendizado Profundo , Dopamina , Neurotransmissores , Norepinefrina , Ratos Sprague-Dawley , Serotonina , Animais , Dopamina/metabolismo , Neurotransmissores/metabolismo , Ratos , Norepinefrina/metabolismo , Norepinefrina/análise , Serotonina/metabolismo , Masculino , Técnicas Eletroquímicas/métodos , Encéfalo/metabolismo , Algoritmos , Microdiálise/métodos , Redes Neurais de ComputaçãoRESUMO
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Nanotecnologia/métodos , Biomarcadores , MicrofluídicaRESUMO
As nitric oxide (NO) plays significant roles in a variety of physiological processes, the capability for real-time and accurate detection of NO in live organisms is in great demand. Traditional assessments of NO rely on indirect colorimetric techniques or electrochemical sensors that often comprise rigid constituent materials and can hardly satisfy sensitivity and spatial resolution simultaneously. Here, we report a flexible and highly sensitive biosensor based on organic electrochemical transistors (OECTs) capable of continuous and wireless detection of NO in biological systems. By modifying the geometry of the active channel and the gate electrodes of OECTs, devices achieve optimum signal amplification of NO. The sensor exhibits a low response limit, a wide linear range, high sensitivity, and excellent selectivity, with a miniaturized active sensing region compared with a conventional electrochemical sensor. The device demonstrates continuous detection of the nanomolar range of NO in cultured cells for hours without significant signal drift. Real-time and wireless measurement of NO is accomplished for 8 d in the articular cavity of New Zealand White rabbits with anterior cruciate ligament (ACL) rupture injuries. The observed high level of NO is associated with the onset of osteoarthritis (OA) at the later stage. The proposed device platform could provide critical information for the early diagnosis of chronic diseases and timely medical intervention to optimize therapeutic efficacy.
Assuntos
Técnicas Biossensoriais , Óxido Nítrico , Osteoartrite , Tecnologia sem Fio , Animais , Técnicas Biossensoriais/métodos , Doença Crônica , Diagnóstico Precoce , Técnicas Eletroquímicas/métodos , Eletrodos , Óxido Nítrico/análise , Osteoartrite/diagnóstico , CoelhosRESUMO
The accurate diagnosis of diabetic nephropathy relies on achieving ultrasensitive biosensing for biomarker detection. However, existing biosensors face challenges such as poor sensitivity, complexity, time-consuming procedures, and high assay costs. To address these limitations, we report a WS2-based plasmonic biosensor for the ultrasensitive detection of biomarker candidates in clinical human urine samples associated with diabetic nephropathy. Leveraging plasmonic-based electrochemical impedance microscopy (P-EIM) imaging, we observed a remarkable charge sensitivity in monolayer WS2 single crystals. Our biosensor exhibits an exceptionally low detection limit (0.201 ag/mL) and remarkable selectivity in detecting CC chemokine ligand 2 (CCL2) protein biomarkers, outperforming conventional techniques such as ELISA. This work represents a breakthrough in traditional protein sensors, providing a direction and materials foundation for developing ultrasensitive sensors tailored to clinical applications for biomarker sensing.
Assuntos
Biomarcadores , Técnicas Biossensoriais , Quimiocina CCL2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/urina , Nefropatias Diabéticas/diagnóstico , Técnicas Biossensoriais/métodos , Quimiocina CCL2/urina , Biomarcadores/urina , Limite de Detecção , Técnicas Eletroquímicas/métodosRESUMO
MicroRNAs (MiRNAs) are valuable biomarkers for the diagnosis and prognosis of diseases. The development of reliable assays is an urgent pursuit. We herein fabricate a novel electrochemical sensing strategy based on the conformation transitions of DNA nanostructures and click chemistry. Duplex-specific nuclease (DSN)-catalyzed reaction is first used for the disintegration of the DNA triangular pyramid frustum (DNA TPF). A DNA triangle is formed, which in turn assists strain-promoted alkyne-azide cycloaddition (SPAAC) to localize single-stranded DNA probes (P1). After SPAAC ligation, multiple DNA hairpins are spontaneously folded, and the labeled electrochemical species are dragged near the electrode interface. By recording and analyzing the responses, a highly sensitive electrochemical biosensor is established, which exhibits high sensitivity and reproducibility. Clinical applications have been verified with good stability. This sensing strategy relies on the integration of DNA nanostructures and click chemistry, which may inspire further designs for the development of DNA nanotechnology and applications in clinical chemistry.
Assuntos
Técnicas Biossensoriais , Química Click , DNA , Técnicas Eletroquímicas , Nanoestruturas , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Técnicas Eletroquímicas/métodos , DNA/química , Humanos , Reação de Cicloadição , MicroRNAs/análise , Alcinos/química , Azidas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico , Sondas de DNA/químicaRESUMO
Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.
Assuntos
Técnicas Biossensoriais , Detecção Precoce de Câncer , Técnicas Eletroquímicas , Neoplasias , Humanos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Detecção Precoce de Câncer/métodos , Neoplasias/diagnóstico , Biomarcadores Tumorais/análise , DNA/análise , RNA/análiseRESUMO
A self-powered photoelectrochemical (PEC) sensor has attracted widespread attention in the field of analysis, but it is still a challenge to enhance its response signals with rational strategies. In this work, a novel self-powered PEC sensing platform was developed for the quantitative detection of gatifloxacin (GAT) based on a photofuel cell consisting of two types of ZIF-derived ZnO/Co3O4 heterojunctions as photoactive materials. Peroxymonosulfate (PMS) was first used as an electron acceptor coupled with a photofuel cell to develop a synergetic signal amplification strategy. In a dual-photoelectrode system, the PMS activation on the ZnO@Co3O4 photocathode not only accelerated electron transfer from the Co3O4@ZnO photoanode to achieve strong signal intensity but also improved the sensing sensitivity by the oxidation reaction of generated highly active radicals to GAT. Compared with the absence of electron acceptors, the introduction of PMS produced a 2-fold enhancement in the signal output performance and a more than 72-fold improvement in the signal sensitivity. For the construction of the sensing interface, a molecularly imprinted polymer was assembled on the photocathode to specifically recognize GAT. The proposed sensor exhibited a detection range of 10-1 to 105 pM with a detection limit of 0.065 pM. The proposed sensing method has the advantages of sensitivity, simplicity, reliable stability, and anti-interference ability, which opens the door to the design of high-performance self-powered PEC sensors.
Assuntos
Técnicas Biossensoriais , Cobalto , Óxidos , Peróxidos , Óxido de Zinco , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de DetecçãoRESUMO
A high-sensitivity, low-cost, self-powered biomass electrochemical biosensor based on the "evaporating potential" theory is developed for protein detection. The feasibility of experimental evaluation methods was verified with a probe protein of bovine serum albumin. The sensor was then used to detect lung cancer marker CYFRA21-1, and the potential of our sensor for clinical diagnosis was demonstrated by serum analysis. This work innovatively exploits the osmotic power generation capability of natural wood to construct a promising electrochemical biosensor that was driven by kinetics during testing. The detection methods used for this sensor, chronoamperometry and AC impedance, showed potential for quantitative analysis and specific detection, respectively. Furthermore, the sensor could facilitate new insights into the development of high-sensitivity, low-cost, and easy-to-use electrochemical biosensors.
Assuntos
Antígenos de Neoplasias , Técnicas Biossensoriais , Queratina-19 , Madeira , Soroalbumina Bovina , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodosRESUMO
Organic electrochemical transistors with signal amplification and good stability are expected to play a more important role in the detection of environmental pollutants. However, the bias voltage at the gate may have an effect on the activity of vulnerable biomolecules. In this work, a novel organic photoelectrochemical transistor (OPECT) aptamer biosensor was developed for di(2-ethylhexyl) phthalate (DEHP) detection by combining photoelectrochemical analysis with an organic electrochemical transistor, where MXene/Bi2S3/CdIn2S4 was employed as a photoactive material, target-dependent DNA hybridization chain reaction was used as a signal amplification unit, and Ru(NH3)63+ was selected as a signal enhancement molecule. The poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based OPECT biosensor modulated by the MXene/Bi2S3/CdIn2S4 photosensitive material achieved a high current gain of nearly a thousand times at zero bias voltage. The developed signal-on OPECT sensing platform realized sensitive and specific detection of DEHP, with a detection range of 1-200 pM and a minimum detection limit of 0.24 pM under optimized experimental conditions, and its application to real water samples was also evaluated with satisfactory results. Hence, the construction of this OPECT biosensing platform not only provides a promising tool for the detection of DEHP but also reveals the great potential of the OPECT application for the detection of other environmental toxins.
Assuntos
Técnicas Biossensoriais , Dietilexilftalato , Nitritos , Elementos de Transição , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Oligonucleotídeos , Limite de DetecçãoRESUMO
Adsorption of a biofouling layer on the surface of biosensors decreases the electrochemical activity and hence shortens the service life of biosensors, particularly implantable and wearable biosensors. Real-time quantification of the loss of activity is important for in situ assessment of performance while presenting an opportunity to compensate for the loss of activity and recalibrate the sensor to extend the service life. Here, we introduce an electrochemical noise measurement technique as a tool for the quantification of the formation of a biofouling layer on the surface of gold. The technique uniquely affords thermodynamic and kinetic information without applying an external bias (potential and/or current), hence allowing the system to be appraised in its innate state. The technique relies on the analysis of non-faradaic current and potential fluctuations that are intrinsically generated by the interaction of charged species at the electrode surface, i.e., gold. An analytical model is extended to explain the significance of parameters drawn from statistical analysis of the noise signal. This concept is then examined in buffered media in the presence of albumin, a common protein in the blood and a known source of a fouling layer in biological systems. Results indicate that the statistical analysis of the noise signal can quantify the loss of electrochemical activity, which is also corroborated by impedance spectroscopy as a complementary technique.
Assuntos
Incrustação Biológica , Técnicas Eletroquímicas , Ouro , Ouro/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais , Propriedades de Superfície , Eletrodos , AdsorçãoRESUMO
Measuring neuronal electrical activity, such as action potential propagation in cells, requires the sensitive detection of the weak electrical signal with high spatial and temporal resolution. None of the existing tools can fulfill this need. Recently, plasmonic-based electrochemical impedance microscopy (P-EIM) was demonstrated for the label-free mapping of the ignition and propagation of action potentials in neuron cells with subcellular resolution. However, limited by the signal-to-noise ratio in the high-speed P-EIM video, action potential mapping was achieved by averaging 90 cycles of signals. Such extensive averaging is not desired and may not always be feasible due to factors such as neuronal desensitization. In this study, we utilized advanced signal processing techniques to detect action potentials in P-EIM extracted signals with fewer averaged cycles. Matched filtering successfully detected action potential signals with as few as averaging five cycles of signals. Long short-term memory (LSTM) recurrent neural network achieved the best performance and was able to detect single-cycle stimulated action potential successfully [satisfactory area under the receiver operating characteristic curve (AUC) equal to 0.855]. Therefore, we show that deep learning-based signal processing can dramatically improve the usability of P-EIM mapping of neuronal electrical signals.
Assuntos
Potenciais de Ação , Aprendizado Profundo , Impedância Elétrica , Técnicas Eletroquímicas , Microscopia , Microscopia/métodos , Animais , Técnicas Eletroquímicas/métodos , Neurônios/fisiologiaRESUMO
Accurate measurement of cancer markers in urine is a convenient method for tumor monitoring. However, the concentration of cancer markers in urine is so low that it is difficult to achieve their measurement. Photoelectrochemical (PEC) sensors are a promising technology to realize the detection of trace cancer markers due to their high sensitivity. Currently, the interference of nonspecific biomolecules in urine is the main reason affecting the high sensitivity and selectivity of PEC sensors in detecting cancer markers. In this work, a strategy of oxygen vacancy (OV) modulation is proposed to construct a fouling-resistant PEC aptamer sensing platform for the detection of α-fetoprotein (AFP), a liver cancer marker. The introduction of OVs induces the formation of intermediate localized states in the photoelectric material, which not only facilitates the separation of photogenerated carriers but also leads to the redshift of the light absorption edge. More importantly, OVs with positive electrical properties can be employed to modify the antifouling layer (C-PEG) with negatively charged groups through an electrostatic interaction. The synergistic effect of OVs, antifouling layer, and aptamer resulted in a TiO2/OVs/C-PEG-based PEC sensor achieves a wide linear range from 1 pg/mL to 100 ng/mL and a low detection limit of 0.3 pg/mL for AFP. In addition, the sensor successfully realized the determination of AFP in urine samples and accurately differentiated between normal people and liver cancer patients in the early and advanced stages. This project is of great significance in advancing the application of photoelectrochemical bioanalytical technology to achieve the detection of cancer markers in urine by investigating the construction of an OVs-regulated fouling-resistant sensing interface.
Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas , Oxigênio , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Limite de DetecçãoRESUMO
Although porphyrins make up a promising class of electrochemiluminescence (ECL) luminophors, their aggregation-caused quenching (ACQ) characteristics lead to inferior ECL efficiency (ΦECL). Furthermore, current application of porphyrins is limited to cathodic emission. This work creatively exploited a cage-like porous complex (referred to as SWU-1) as the microreactor to recede the ACQ effect while modulating dual ECL emission of meso-tetra(4-carboxyphenyl)porphine (TCPP), which self-assembled with SWU-1 to form TCPP@SWU-1 nanocapsules (TCPP@SWU-1 NCs). As the microreactor, SWU-1 not only effectively constrained TCPP aggregation to improve electron-hole recombination efficiency but also improved stability of anion and cation radicals, thus significantly enhancing the dual emission of TCPP. Compared with TCPP aggregates, the resulting TCPP@SWU-1 NCs exhibited significantly enhanced anodic and cathodic emission, and their ΦECL was increased by 8.7-fold and 3.9-fold, respectively. Furthermore, black hole quencher-2 (BHQ2) can simultaneously quench anodic and cathodic signals. TCPP@SWU-1 NCs coupling BHQ2 conveniently achieved an ECL ratio detection of miRNA-126, and the limit of detection (S/N = 3) was 4.1 aM. This work pioneered the development of the cage-like porous complex SWU-1 as the microreactor to alleviate defects of the ACQ effect and mediate dual emission of TCPP. The coupling of dual-emitting TCPP@SWU-1 NCs and dual-function moderator BHQ2 created a novel single-luminophor-based ratio system for bioanalysis and provided a promising ECL analysis approach for miRNA-126.
Assuntos
Técnicas Biossensoriais , MicroRNAs , Porfirinas , Porosidade , Fotometria , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodosRESUMO
For conventional potential-resolved ratiometric electrochemiluminescence (ECL) systems, the introduction of multiplex coreactants is imperative. However, the undesirable interactions between different coreactants inevitably affect analytical accuracy and sensitivity. Herein, through the coordination of aggregation-induced emission ligands with gadolinium cations, the self-luminescent metal-organic framework (Gd-MOF) is prepared and serves as a novel coreactant-free anodic ECL emitter. By the intercalation of [Ru(bpy)2dppz]2+ with light switch effect into DNA duplex, one high-efficiency cathodic ECL probe is obtained using K2S2O8 as a coreactant. In the presence of acetamiprid, the strong affinity between the target and its aptamer induces the release of [Ru(bpy)2dppz]2+, resulting in a decreasing cathode signal and an increasing anode signal owing to the ECL resonance energy transfer from Gd-MOF to [Ru(bpy)2dppz]2+. In this way, an efficient dual-signal ECL aptasensor is constructed for the ratiometric analysis of acetamiprid, exhibiting a remarkably low detection limit of 0.033 pM. Strikingly, by using only one exogenous coreactant, the cross interference from multiple coreactants can be eliminated, thus improving the detection accuracy. The developed high-performance ECL sensing platform is successfully applied to monitor the residual level of acetamiprid in real samples, demonstrating its potential application in the field of food security.
Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Neonicotinoides , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Fotometria , Técnicas Eletroquímicas/métodosRESUMO
Dopamine (DA), an essential neurotransmitter, is closely associated with various neurological disorders, whose real-time dynamic monitoring is significant for evaluating the physiological activities of neurons. Electrochemical sensing methods are commonly used to determine DA, but they mostly rely on the redox reaction of its o-phenolic hydroxyl group, which makes it difficult to distinguish it from substances with this group. Here, we design a biomimetic nanozyme inspired by the coordination structure of the copper-based active site of dopamine ß-hydroxylase, which was successfully synthesized via a urea-mediated MOF pyrolysis reconstruction strategy. Experimental studies and theoretical calculations revealed that the nanozyme with Cu-N3 coordination could hydroxylate the carbon atom of the DA ß-site at a suitable potential and that the active sites of this Cu-N3 structure have the lowest binding energy for the DA ß-site. With this property, the new oxidation peak achieves the specific detection of DA rather than the traditional electrochemical signal of o-phenol hydroxyl redox, which would effectively differentiate it from neurotransmitters, such as norepinephrine and epinephrine. The sensor exhibited good monitoring capability in DA concentrations from 0.05 to 16.7 µM, and its limit of detection was 0.03 µM. Finally, the sensor enables the monitoring of DA released from living cells and can be used to quantitatively analyze the effect of polystyrene microplastics on the amount of DA released. The research provides a method for highly specific monitoring of DA and technical support for initial screening for neurocytotoxicity of pollutants.
Assuntos
Dopamina , Oxigenases de Função Mista , Dopamina/química , Fenol , Biomimética , Cobre , Plásticos , Pirólise , Eletrodos , Neurotransmissores , Técnicas Eletroquímicas/métodosRESUMO
In this study, we reported a selective impedimetric biosensor for the detection of A29 which is the target protein of the monkeypox virus (MPXV). The working principle of the biosensor relies on the interaction mechanism between A29, which is an internal membrane protein of MPXV, and the heparan sulfate receptor. For this purpose, after immobilizing heparan sulfate onto the gold screen-printed electrode surface, its interaction with A29 protein was monitored using electrochemical impedance spectroscopy. After the optimization of experimental parameters, the analytical characteristics of the developed MPVX immunosensor were examined. The developed immunosensor exhibited a linear detection range between 2.0 and 50 ng mL-1, with a detection limit of 2.08 ng mL-1 and a quantification limit of 6.28 ng mL-1. Furthermore, a relative standard deviation value of 2.82% was determined for 25 ng mL-1. Apart from that, sample application studies were also performed with the standard addition of A29 protein to 1:10 diluted real serum samples that were taken from healthy individuals, and very good recovery values were obtained.