Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 684
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Trends Immunol ; 45(5): 325-326, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38637201

RESUMO

To surveil an organ for pathogens, lymphoid structures need to sample antigens locally. The full set of lymphoid structures involved in surveilling for brain-tropic pathogens has not been defined. Through comprehensive imaging of the mouse meninges, a new study by Fitzpatrick et al. describes dural-associated lymphoid tissue (DALT) and its contribution to humoral responses following intranasal viral infection.


Assuntos
Tecido Linfoide , Animais , Tecido Linfoide/imunologia , Tecido Linfoide/virologia , Humanos , Camundongos , Meninges/imunologia , Encéfalo/imunologia , Encéfalo/virologia , Encéfalo/fisiologia , Imunidade Humoral
2.
J Virol ; 98(2): e0165223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299866

RESUMO

CCR5-tropic simian/human immunodeficiency viruses (SHIV) with clade C transmitted/founder envelopes represent a critical tool for the investigation of HIV experimental vaccines and microbicides in nonhuman primates, although many such isolates lead to spontaneous viral control post infection. Here, we generated a high-titer stock of pathogenic SHIV-C109p5 by serial passage in two rhesus macaques (RM) and tested its virulence in aged monkeys. The co-receptor usage was confirmed before infecting five geriatric rhesus macaques (four female and one male). Plasma viral loads were monitored by reverse transcriptase-quantitative PCR (RT-qPCR), cytokines by multiplex analysis, and biomarkers of gastrointestinal damage by enzyme-linked immunosorbent assay. Antibodies and cell-mediated responses were also measured. Viral dissemination into tissues was determined by RNAscope. Intravenous SHIV-C109p5 infection of aged RMs leads to high plasma viremia and rapid disease progression; rapid decrease in CD4+ T cells, CD4+CD8+ T cells, and plasmacytoid dendritic cells; and wasting necessitating euthanasia between 3 and 12 weeks post infection. Virus-specific cellular immune responses were detected only in the two monkeys that survived 4 weeks post infection. These were Gag-specific TNFα+CD8+, MIP1ß+CD4+, Env-specific IFN-γ+CD4+, and CD107a+ T cell responses. Four out of five monkeys had elevated intestinal fatty acid binding protein levels at the viral peak, while regenerating islet-derived protein 3α showed marked increases at later time points in the three animals surviving the longest, suggesting gut antimicrobial peptide production in response to microbial translocation post infection. Plasma levels of monocyte chemoattractant protein-1, interleukin-15, and interleukin-12/23 were also elevated. Viral replication in gut and secondary lymphoid tissues was extensive.IMPORTANCESimian/human immunodeficiency viruses (SHIV) are important reagents to study prevention of virus acquisition in nonhuman primate models of HIV infection, especially those representing transmitted/founder (T/F) viruses. However, many R5-tropic SHIV have limited fitness in vivo leading to many monkeys spontaneously controlling the virus post acute infection. Here, we report the generation of a pathogenic SHIV clade C T/F stock by in vivo passage leading to sustained viral load set points, a necessity to study pathogenicity. Unexpectedly, administration of this SHIV to elderly rhesus macaques led to extensive viral replication and fast disease progression, despite maintenance of a strict R5 tropism. Such age-dependent rapid disease progression had previously been reported for simian immunodeficiency virus but not for R5-tropic SHIV infections.


Assuntos
Infecções por HIV , HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Replicação Viral , Animais , Feminino , Masculino , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Envelhecimento , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/patologia , Progressão da Doença , HIV/classificação , HIV/crescimento & desenvolvimento , HIV/patogenicidade , HIV/fisiologia , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucinas/imunologia , Interleucinas/metabolismo , Intestinos/virologia , Tecido Linfoide/virologia , Macaca mulatta/imunologia , Macaca mulatta/metabolismo , Inoculações Seriadas , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/patogenicidade , Vírus da Imunodeficiência Símia/fisiologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Carga Viral , Tropismo Viral , Virulência , Receptores CCR5/metabolismo
3.
Cell ; 143(5): 789-801, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21111238

RESUMO

The mechanism by which CD4 T cells are depleted in HIV-infected hosts remains poorly understood. In ex vivo cultures of human tonsil tissue, CD4 T cells undergo a pronounced cytopathic response following HIV infection. Strikingly, >95% of these dying cells are not productively infected but instead correspond to bystander cells. We now show that the death of these "bystander" cells involves abortive HIV infection. Inhibitors blocking HIV entry or early steps of reverse transcription prevent CD4 T cell death while inhibition of later events in the viral life cycle does not. We demonstrate that the nonpermissive state exhibited by the majority of resting CD4 tonsil T cells leads to accumulation of incomplete reverse transcripts. These cytoplasmic nucleic acids activate a host defense program that elicits a coordinated proapoptotic and proinflammatory response involving caspase-3 and caspase-1 activation. While this response likely evolved to protect the host, it centrally contributes to the immunopathogenic effects of HIV.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , HIV-1/imunologia , Tecido Linfoide/virologia , Apoptose , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Replicação do DNA , DNA Viral/metabolismo , Transcriptase Reversa do HIV/metabolismo , Humanos , Tecido Linfoide/citologia , Tecido Linfoide/imunologia
4.
Retrovirology ; 21(1): 8, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693565

RESUMO

The study of HIV infection and pathogenicity in physical reservoirs requires a biologically relevant model. The human immune system (HIS) mouse is an established model of HIV infection, but defects in immune tissue reconstitution remain a challenge for examining pathology in tissues. We utilized exogenous injection of the human recombinant FMS-like tyrosine kinase 3 ligand (rFLT-3 L) into the hematopoietic stem cell (HSC) cord blood HIS mouse model to significantly expand the total area of lymph node (LN) and the number of circulating human T cells. The results enabled visualization and quantification of HIV infectivity, CD4 T cell depletion and other measures of pathogenesis in the secondary lymphoid tissues of the spleen and LN. Treatment with the Caspase-1/4 inhibitor VX-765 limited CD4+ T cell loss in the spleen and reduced viral load in both the spleen and axillary LN. In situ hybridization further demonstrated a decrease in viral RNA in both the spleen and LN. Transcriptomic analysis revealed that in vivo inhibition of caspase-1/4 led to an upregulation in host HIV restriction factors including SAMHD1 and APOBEC3A. These findings highlight the use of rFLT-3 L to augment human immune system characteristics in HIS mice to support investigations of HIV pathogenesis and test host directed therapies, though further refinements are needed to further augment LN architecture and cellular populations. The results further provide in vivo evidence of the potential to target inflammasome pathways as an avenue of host-directed therapy to limit immune dysfunction and virus replication in tissue compartments of HIV+ persons.


Assuntos
Linfócitos T CD4-Positivos , Modelos Animais de Doenças , Infecções por HIV , HIV-1 , Animais , Camundongos , Infecções por HIV/imunologia , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , HIV-1/efeitos dos fármacos , Humanos , Linfócitos T CD4-Positivos/imunologia , Tecido Linfoide/virologia , Tecido Linfoide/imunologia , Carga Viral/efeitos dos fármacos , Baço/virologia , Baço/imunologia , Linfonodos/imunologia , Linfonodos/virologia , Caspases/metabolismo , Inibidores de Caspase/farmacologia , Antirretrovirais/uso terapêutico
5.
J Virol ; 97(6): e0054323, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37184401

RESUMO

HIV reservoirs persist in anatomic compartments despite antiretroviral therapy (ART). Characterizing archival HIV DNA in the central nervous system (CNS) and other tissues is crucial to inform cure strategies. We evaluated paired autopsy brain-frontal cortex (FC), occipital cortex (OCC), and basal ganglia (BG)-and peripheral lymphoid tissues from 63 people with HIV. Participants passed away while virally suppressed on ART at the last visit and without evidence of CNS opportunistic disease. We quantified total HIV DNA in all participants and obtained full-length HIV-envelope (FL HIV-env) sequences from a subset of 14 participants. We detected HIV DNA (gag) in most brain (65.1%) and all lymphoid tissues. Lymphoid tissues had higher HIV DNA levels than the brain (P < 0.01). Levels of HIV gag between BG and FC were similar (P > 0.2), while OCC had the lowest levels (P = 0.01). Females had higher HIV DNA levels in tissues than males (gag, P = 0.03; 2-LTR, P = 0.05), suggesting possible sex-associated mechanisms for HIV reservoir persistence. Most FL HIV-env sequences (n = 143) were intact, while 42 were defective. Clonal sequences were found in 8 out of 14 participants, and 1 participant had clonal defective sequences in the brain and spleen, suggestive of cell migration. From 10 donors with paired brain and lymphoid sequences, we observed evidence of compartmentalized sequences in 2 donors. Our data further the idea that the brain is a site for archival HIV DNA during ART where compartmentalized provirus may occur in a subset of people. Future studies assessing FL HIV-provirus and replication competence are needed to further evaluate the HIV reservoirs in tissues. IMPORTANCE HIV infection of the brain is associated with adverse neuropsychiatric outcomes, despite efficient antiretroviral treatment. HIV may persist in reservoirs in the brain and other tissues, which can seed virus replication if treatment is interrupted, representing a major challenge to cure HIV. We evaluated reservoirs and genetic features in postmortem brain and lymphoid tissues from people with HIV who passed away during suppressed HIV replication. We found a differential distribution of HIV reservoirs across brain regions which was lower than that in lymphoid tissues. We observed that most HIV reservoirs in tissues had intact envelope sequences, suggesting they could potentially generate replicative viruses. We found that women had higher HIV reservoir levels in brain and lymphoid tissues than men, suggesting possible sex-based mechanisms of maintenance of HIV reservoirs in tissues, warranting further investigation. Characterizing the archival HIV DNA in tissues is important to inform future HIV cure strategies.


Assuntos
Encéfalo , DNA Viral , HIV-1 , Tecido Linfoide , Feminino , Humanos , Masculino , Encéfalo/virologia , DNA Viral/genética , Infecções por HIV/virologia , Provírus/genética , Baço/virologia , Pessoa de Meia-Idade , Tecido Linfoide/virologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , HIV-1/genética
6.
J Virol ; 97(6): e0176022, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37223960

RESUMO

CD4+ T follicular helper (TFH) cells are key targets for human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) replication and contribute to the virus reservoir under antiretroviral therapy (ART). Here, we describe a novel CD3+ CD20+ double-positive (DP) lymphocyte subset, resident in secondary lymphoid organs of humans and rhesus macaques (RMs), that appear predominantly after membrane exchange between TFH and B cells. DP lymphocytes are enriched in cells displaying a TFH phenotype (CD4+ PD1hi CXCR5hi), function (interleukin 21 positive [IL-21+]), and gene expression profile. Importantly, expression of CD40L upon brief in vitro mitogen stimulation identifies, by specific gene-expression signatures, DP cells of TFH-cell origin versus those of B-cell origin. Analysis of 56 RMs showed that DP cells (i) significantly increase following SIV infection, (ii) are reduced after 12 months of ART in comparison to pre-ART levels, and (iii) expand to a significantly higher frequency following ART interruption. Quantification of total SIV-gag DNA on sorted DP cells from chronically infected RMs showed that these cells are susceptible to SIV infection. These data reinforce earlier observations that CD20+ T cells are infected and expanded by HIV infection, while suggesting that these cells phenotypically overlap activated CD4+ TFH cells that acquire CD20 expression via trogocytosis and can be targeted as part of therapeutic strategies aimed at HIV remission. IMPORTANCE The HIV reservoir is largely composed of latently infected memory CD4+ T cells that persist during antiretroviral therapy and constitute a major barrier toward HIV eradication. In particular, CD4+ T follicular helper cells have been demonstrated as key targets for viral replication and persistence under ART. In lymph nodes from HIV-infected humans and SIV-infected rhesus macaques, we show that CD3+ CD20+ lymphocytes emerge after membrane exchange between T cells and B cells and are enriched in phenotypic, functional, and gene expression profiles found in T follicular helper cells. Furthermore, in SIV-infected rhesus macaques, these cells expand following experimental infection and after interruption of ART and harbor SIV DNA at levels similar to those found in CD4+ T cells; thus, CD3+ CD20+ lymphocytes are susceptible to SIV infection and can contribute to SIV persistence.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Células T Auxiliares Foliculares , Animais , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Linfonodos/citologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/virologia , Linfócitos B/imunologia , Linfócitos B/virologia , Ligante de CD40/genética , Expressão Gênica/imunologia , DNA Viral/metabolismo , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Tecido Linfoide/virologia
7.
PLoS Pathog ; 17(5): e1009575, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33961680

RESUMO

HIV-infected infants are at an increased risk of progressing rapidly to AIDS in the first weeks of life. Here, we evaluated immunological and virological parameters in 25 SIV-infected infant rhesus macaques to understand the factors influencing a rapid disease outcome. Infant macaques were infected with SIVmac251 and monitored for 10 to 17 weeks post-infection. SIV-infected infants were divided into either typical (TypP) or rapid (RP) progressor groups based on levels of plasma anti-SIV antibody and viral load, with RP infants having low SIV-specific antibodies and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype. Interestingly, TypP had lower levels of total CD4 T cells, similar reductions in CD4/CD8 ratios and elevated activation of CD8 T cells, as measured by the levels of HLA-DR, compared to RP. Differences between the two groups were identified in other immune cell populations, including a failure to expand activated memory (CD21-CD27+) B cells in peripheral blood in RP infant macaques, as well as reduced levels of germinal center (GC) B cells and T follicular helper (Tfh) cells in spleens (4- and 10-weeks post-SIV). Reduced B cell proliferation in splenic germinal GCs was associated with increased SIV+ cell density and follicular type 1 interferon (IFN)-induced immune activation. Further analyses determined that at 2-weeks post SIV infection TypP infants exhibited elevated levels of the GC-inducing chemokine CXCL13 in plasma, as well as significantly lower levels of viral envelope diversity compared to RP infants. Our findings provide evidence that early viral and immunologic events following SIV infection contributes to impairment of B cells, Tfh cells and germinal center formation, ultimately impeding the development of SIV-specific antibody responses in rapidly progressing infant macaques.


Assuntos
Progressão da Doença , Imunidade Humoral , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Variação Genética , Centro Germinativo/imunologia , Centro Germinativo/virologia , Humanos , Interferon Tipo I/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/virologia , Macaca mulatta , Fenótipo , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Carga Viral
8.
Proc Natl Acad Sci U S A ; 117(8): 4292-4299, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32034098

RESUMO

The migratory patterns of virus-specific CD8 T cells during chronic viral infection are not well understood. To address this issue, we have done parabiosis experiments during chronic lymphocytic choriomeningitis virus (LCMV) infection of mice. We found that despite the high frequency of virus-specific CD8 T cells in both lymphoid and nonlymphoid tissues there was minimal migration of virus-specific CD8 T cells between the chronically infected conjoined parabiont mice. This was in contrast to parabionts between mice that had undergone an acute LCMV infection where virus-specific CD8 T cells established equilibrium demonstrating circulation of memory T cells generated after viral clearance. We have identified a population of PD-1+ TCF1+CXCR5+Tim-3- stemlike virus-specific CD8 T cells that reside in lymphoid tissues and act as resource cells for maintaining the T cell response during chronic infection. These are the cells that proliferate and give rise to the more terminally differentiated PD-1+ CXCR5-Tim-3+ CD8 T cells. Both the stemlike CD8 T cells and their terminally differentiated progeny showed minimal migration during chronic infection and the few LCMV-specific CD8 T cells that were present in circulation were the recently emerging progeny from the stemlike CD8 T cells. The PD-1+ TCF1+CXCR5+ stemlike CD8 T cells were truly resident in lymphoid tissues and did not circulate in the blood. We propose that this residency in specialized niches within lymphoid tissues is a key aspect of their biology and is essential for maintaining their quiescence and stemlike program under conditions of a chronic viral infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Tecido Linfoide/imunologia , Receptor de Morte Celular Programada 1/imunologia , Animais , Feminino , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Humanos , Memória Imunológica , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/genética , Tecido Linfoide/virologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/genética , Receptores CXCR5/genética , Receptores CXCR5/imunologia
9.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33408171

RESUMO

Infection with Zaire ebolavirus (EBOV), a member of the Filoviridae family, causes a disease characterized by high levels of viremia, aberrant inflammation, coagulopathy, and lymphopenia. EBOV initially replicates in lymphoid tissues and disseminates via dendritic cells (DCs) and monocytes to liver, spleen, adrenal gland, and other secondary organs. EBOV protein VP35 is a critical immune evasion factor that inhibits type I interferon signaling and DC maturation. Nonhuman primates (NHPs) immunized with a high dose (5 × 105 PFU) of recombinant EBOV containing a mutated VP35 (VP35m) are protected from challenge with wild-type EBOV (wtEBOV). This protection is accompanied by a transcriptional response in the peripheral blood reflecting a regulated innate immune response and a robust induction of adaptive immune genes. However, the host transcriptional response to VP35m in lymphoid tissues has not been evaluated. Therefore, we conducted a transcriptional analysis of axillary and inguinal lymph nodes and spleen tissues of NHPs infected with a low dose (2 × 104 PFU) of VP35m and then back-challenged with a lethal dose of wtEBOV. VP35m induced early transcriptional responses in lymphoid tissues that are distinct from those observed in wtEBOV challenge. Specifically, we detected robust antiviral innate and adaptive responses and fewer transcriptional changes in genes with roles in angiogenesis, apoptosis, and inflammation. Two of three macaques survived wtEBOV back-challenge, with only the nonsurvivor displaying a transcriptional response reflecting Ebola virus disease. These data suggest that VP35 is a key modulator of early host responses in lymphoid tissues, thereby regulating disease progression and severity following EBOV challenge.IMPORTANCE Zaire Ebola virus (EBOV) infection causes a severe and often fatal disease characterized by inflammation, coagulation defects, and organ failure driven by a defective host immune response. Lymphoid tissues are key sites of EBOV pathogenesis and the generation of an effective immune response to infection. A recent study demonstrated that infection with an EBOV encoding a mutant VP35, a viral protein that antagonizes host immunity, can protect nonhuman primates (NHPs) against lethal EBOV challenge. However, no studies have examined the response to this mutant EBOV in lymphoid tissues. Here, we characterize gene expression in lymphoid tissues from NHPs challenged with the mutant EBOV and subsequently with wild-type EBOV to identify signatures of a protective host response. Our findings are critical for elucidating viral pathogenesis, mechanisms of host antagonism, and the role of lymphoid organs in protective responses to EBOV to improve the development of antivirals and vaccines against EBOV.


Assuntos
Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/imunologia , Tecido Linfoide/imunologia , Proteínas Virais Reguladoras e Acessórias/imunologia , Imunidade Adaptativa , Animais , Antivirais/sangue , Ebolavirus/genética , Ebolavirus/imunologia , Regulação da Expressão Gênica/imunologia , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Tecido Linfoide/virologia , Macaca fascicularis , Mutação , Baço/imunologia , Transcriptoma , Proteínas Virais Reguladoras e Acessórias/genética
10.
FASEB J ; 35(2): e21282, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33484474

RESUMO

Cellular viral reservoirs are rapidly established in tissues upon HIV-1/SIV infection, which persist throughout viral infection, even under long-term antiretroviral therapy (ART). Specific integrins are involved in the homing of cells to gut-associated lymphoid tissues (GALT) and inflamed tissues, which may promote the seeding and dissemination of HIV-1/SIV to these tissue sites. In this study, we investigated the efficacy of prophylactic integrin blockade (α4ß7 antibody or α4ß7/α4ß1 dual antagonist TR-14035) on viral infection, as well as dissemination and seeding of viral reservoirs in systemic and lymphoid compartments post-SIV inoculation. The results showed that blockade of α4ß7/α4ß1 did not decrease viral infection, replication, or reduce viral reservoir size in tissues of rhesus macaques after SIV infection, as indicated by equivalent levels of plasma viremia and cell-associated SIV RNA/DNA to controls. Surprisingly, TR-14035 administration in acute SIV infection resulted in consistently higher viremia and more rapid disease progression. These findings suggest that integrin blockade alone fails to effectively control viral infection, replication, dissemination, and reservoir establishment in HIV-1/SIV infection. The use of integrin blockade for prevention or/and therapeutic strategies requires further investigation.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Integrinas/antagonistas & inibidores , Fenilalanina/análogos & derivados , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Animais , Anticorpos Neutralizantes/imunologia , Integrinas/imunologia , Tecido Linfoide/virologia , Macaca mulatta , Mucosa/metabolismo , Mucosa/virologia , Fenilalanina/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/patogenicidade , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral
11.
Clin Immunol ; 231: 108850, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34506944

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has resulted in considerable morbidity and mortality in humans. Little is known regarding the development of immunological memory following SARS-CoV-2 infection or whether immunological memory can provide long-lasting protection against reinfection. Urgent need for vaccines is a considerable issue for all governments worldwide. METHODS: A total of 39 patients were recruited in this study. Tonsillar mononuclear cells (MNCs) were co-cultured in RPMI medium and stimulated with the full-length SARS-CoV-2 spike protein in the presence and absence of a CpG-DNA adjuvant. An enzyme-linked immunosorbent assay (ELISA) was utilised to measure the specific antibody response to the spike protein in the cell culture supernatants. RESULTS: The SARS-CoV-2 spike protein primed a potent memory B cell-mediated immune response in nasal-associated lymphoid tissue (NALT) from patients previously infected with the virus. Additionally, spike protein combined with the CpG-DNA adjuvant induced a significantly increased level of specific anti-spike protein IgG antibody compared with the spike protein alone (p < 0.0001, n = 24). We also showed a strong positive correlation between the specific anti-spike protein IgG antibody level in a serum samples and that produced by MNCs derived from the same COVID-19-recovered patients following stimulation (r = 0.76, p = 0.0002, n = 24). CONCLUSION: Individuals with serological evidence of previous SARS-CoV-2 exposure showed a significant anti-spike protein-specific memory humoral immune response to the viral spike protein upon stimulation. Additionally, our results demonstrated the functional response of NALT-derived MNCs to the viral spike protein. CpG-DNA adjuvant combined with spike protein induced significantly stronger humoral immune responses than the spike protein alone. These data indicate that the S protein antigen combined with CpG-DNA adjuvant could be used as a future vaccine candidate.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Memória Imunológica/fisiologia , Tecido Linfoide/fisiologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/metabolismo , Linfócitos B , Células Cultivadas , DNA , Ensaio de Imunoadsorção Enzimática , Humanos , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/metabolismo , Tecido Linfoide/virologia , Nariz , Oligodesoxirribonucleotídeos , Glicoproteína da Espícula de Coronavírus/imunologia
12.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33028711

RESUMO

Gammaherpesviruses (GHVs) are DNA tumor viruses that establish lifelong, chronic infections in lymphocytes of humans and other mammals. GHV infections are associated with numerous cancers, especially in immunocompromised hosts. While it is known that GHVs utilize host germinal center (GC) B cell responses during latency establishment, an understanding of how viral gene products function in specific B cell subsets to regulate this process is incomplete. Using murine gammaherpesvirus 68 (MHV68) as a small-animal model to define mechanisms of GHV pathogenesis in vivo, we generated a virus in which the M2 gene was flanked by loxP sites (M2.loxP), enabling the use of Cre-lox technology to define M2 function in specific cell types in infection and disease. The M2 gene encodes a protein that is highly expressed in GC B cells that promotes plasma cell differentiation and viral reactivation. M2 was efficiently deleted in Cre-expressing cells, and the presence of loxP sites flanking M2 did not alter viral replication or latency in mice that do not express Cre. In contrast, M2.loxP MHV68 exhibited a deficit in latency establishment and reactivation that resembled M2-null virus, following intranasal (IN) infection of mice that express Cre in all B cells (CD19-Cre). Nearly identical phenotypes were observed for M2.loxP MHV68 in mice that express Cre in germinal center (GC) B cells (AID-Cre). However, colonization of neither draining lymph nodes after IN infection nor the spleen after intraperitoneal (IP) infection required M2, although the reactivation defect was retained. Together, these data confirm that M2 function is B cell-specific and demonstrate that M2 primarily functions in AID-expressing cells to facilitate MHV68 dissemination to distal latency reservoirs within the host and reactivation from latency. Our study reveals that a viral latency gene functions within a distinct subset of cells to facilitate host colonization.IMPORTANCE Gammaherpesviruses establish lifelong chronic infections in cells of the immune system that can lead to lymphomas and other diseases. To facilitate colonization of a host, gammaherpesviruses encode gene products that manipulate processes involved in cellular proliferation and differentiation. Whether and how these viral gene products function in specific cells of the immune system is poorly defined. We report here the use of a viral genetic system that allows for deletion of specific viral genes in discrete populations of cells. We employ this system in an in vivo model to demonstrate cell-type-specific requirements for a particular viral gene. Our findings reveal that a viral gene product can function in distinct cellular subsets to direct gammaherpesvirus pathogenesis.


Assuntos
Linfócitos B/imunologia , Citidina Desaminase/imunologia , Infecções por Herpesviridae/virologia , Rhadinovirus/fisiologia , Proteínas Virais/imunologia , Ativação Viral , Animais , Antígenos CD19/metabolismo , Linfócitos B/virologia , Diferenciação Celular , Proliferação de Células , Centro Germinativo/imunologia , Centro Germinativo/virologia , Infecções por Herpesviridae/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/virologia , Camundongos , Rhadinovirus/genética , Rhadinovirus/metabolismo , Proteínas Virais/genética , Latência Viral
13.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32213610

RESUMO

Ebola virus (EBOV) continues to pose a significant threat to human health, as evidenced by the 2013-2016 epidemic in West Africa and the ongoing outbreak in the Democratic Republic of the Congo. EBOV causes hemorrhagic fever, organ damage, and shock culminating in death, with case fatality rates as high as 90%. This high lethality combined with the paucity of licensed medical countermeasures makes EBOV a critical human pathogen. Although EBOV infection results in significant damage to the liver and the adrenal glands, little is known about the molecular signatures of injury in these organs. Moreover, while changes in peripheral blood cells are becoming increasingly understood, the host responses within organs and lymphoid tissues remain poorly characterized. To address this knowledge gap, we tracked longitudinal transcriptional changes in tissues collected from EBOV-Makona-infected cynomolgus macaques. Following infection, both liver and adrenal glands exhibited significant and early downregulation of genes involved in metabolism, coagulation, hormone synthesis, and angiogenesis; upregulated genes were associated with inflammation. Analysis of lymphoid tissues showed early upregulation of genes that play a role in innate immunity and inflammation and downregulation of genes associated with cell cycle and adaptive immunity. Moreover, transient activation of innate immune responses and downregulation of humoral immune responses in lymphoid tissues were confirmed with flow cytometry. Together, these data suggest that the liver, adrenal gland, and lymphatic organs are important sites of EBOV infection and that dysregulating the function of these vital organs contributes to the development of Ebola virus disease.IMPORTANCE Ebola virus (EBOV) remains a high-priority pathogen since it continues to cause outbreaks with high case fatality rates. Although it is well established that EBOV results in severe organ damage, our understanding of tissue injury in the liver, adrenal glands, and lymphoid tissues remains limited. We begin to address this knowledge gap by conducting longitudinal gene expression studies in these tissues, which were collected from EBOV-infected cynomolgus macaques. We report robust and early gene expression changes within these tissues, indicating they are primary sites of EBOV infection. Furthermore, genes involved in metabolism, coagulation, and adaptive immunity were downregulated, while inflammation-related genes were upregulated. These results indicate significant tissue damage consistent with the development of hemorrhagic fever and lymphopenia. Our study provides novel insight into EBOV-host interactions and elucidates how host responses within the liver, adrenal glands, and lymphoid tissues contribute to EBOV pathogenesis.


Assuntos
Glândulas Suprarrenais , Ebolavirus , Regulação Viral da Expressão Gênica/imunologia , Doença pelo Vírus Ebola , Fígado , Tecido Linfoide , Doenças dos Macacos , Transcrição Gênica/imunologia , Glândulas Suprarrenais/imunologia , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Glândulas Suprarrenais/virologia , Animais , Ebolavirus/imunologia , Ebolavirus/metabolismo , Feminino , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/veterinária , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Tecido Linfoide/virologia , Macaca fascicularis , Masculino , Doenças dos Macacos/imunologia , Doenças dos Macacos/metabolismo , Doenças dos Macacos/patologia , Doenças dos Macacos/virologia
14.
PLoS Pathog ; 15(12): e1008161, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31805155

RESUMO

Non-invasive bioluminescent imaging (NIBLI) of HIV-1 infection dynamics allows for real-time monitoring of viral spread and the localization of infected cell populations in living animals. In this report, we describe full-length replication-competent GFP and Nanoluciferase (Nluc) expressing HIV-1 reporter viruses from two clinical transmitted / founder (T/F) strains: TRJO.c and Q23.BG505. By infecting humanized mice with these HIV-1 T/F reporter viruses, we were able to directly monitor longitudinal viral spread at whole-animal resolution via NIBLI at a sensitivity of as few as 30-50 infected cells. Bioluminescent signal strongly correlated with HIV-1 infection and responded proportionally to virus suppression in vivo in animals treated daily with a combination antiretroviral therapy (cART) regimen. Longitudinal NIBLI following cART withdrawal visualized tissue-sites that harbored virus during infection recrudescence. Notably, we observed rebounding infection in the same lymphoid tissues where infection was first observed prior to ART treatment. Our work demonstrates the utility of our system for studying in vivo viral infection dynamics and identifying infected tissue regions for subsequent analyses.


Assuntos
Fármacos Anti-HIV/farmacologia , Modelos Animais de Doenças , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Medições Luminescentes/métodos , Animais , Infecções por HIV/tratamento farmacológico , Humanos , Tecido Linfoide/efeitos dos fármacos , Tecido Linfoide/virologia , Camundongos , Replicação Viral/efeitos dos fármacos
15.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578287

RESUMO

CD137, a member of the tumor necrosis factor receptor superfamily of cell surface proteins, acts as a costimulatory receptor on T cells, natural killer cells, B cell subsets, and some dendritic cells. Agonistic anti-CD137 monoclonal antibody (MAb) therapy has been combined with other chemotherapeutic agents in human cancer trials. Based on its ability to promote tumor clearance, we hypothesized that anti-CD137 MAb might activate immune responses and resolve chronic viral infections. We evaluated anti-CD137 MAb therapy in a mouse infection model of chikungunya virus (CHIKV), an alphavirus that causes chronic polyarthritis in humans and is associated with reservoirs of CHIKV RNA that are not cleared efficiently by adaptive immune responses. Analysis of viral tropism revealed that CHIKV RNA was present preferentially in splenic B cells and follicular dendritic cells during the persistent phase of infection, and animals lacking B cells did not develop persistent CHIKV infection in lymphoid tissue. Anti-CD137 MAb treatment resulted in T cell-dependent clearance of CHIKV RNA in lymphoid tissue, although this effect was not observed in musculoskeletal tissue. The clearance of CHIKV RNA from lymphoid tissue by anti-CD137 MAb was associated with reductions in the numbers of germinal center B cells and follicular dendritic cells. Similar results were observed with anti-CD137 MAb treatment of mice infected with Mayaro virus, a related arthritogenic alphavirus. Thus, anti-CD137 MAb treatment promotes resolution of chronic alphavirus infection in lymphoid tissues by reducing the numbers of target cells for infection and persistence.IMPORTANCE Although CHIKV causes persistent infection in lymphoid and musculoskeletal tissues in multiple animals, the basis for this is poorly understood, which has hampered pharmacological efforts to promote viral clearance. Here, we evaluated the therapeutic effects on persistent CHIKV infection of an agonistic anti-CD137 MAb that can activate T cell and natural killer cell responses to clear tumors. We show that treatment with anti-CD137 MAb promotes the clearance of persistent alphavirus RNA from lymphoid but not musculoskeletal tissues. This occurs because anti-CD137 MAb-triggered T cells reduce the numbers of target germinal center B cells and follicular dendritic cells, which are the primary reservoirs for CHIKV in the spleen and lymph nodes. Our studies help to elucidate the basis for CHIKV persistence and begin to provide strategies that can clear long-term cellular reservoirs of infection.


Assuntos
Anticorpos Monoclonais/farmacologia , Febre de Chikungunya/imunologia , Vírus Chikungunya/efeitos dos fármacos , Tecido Linfoide/virologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Imunidade Adaptativa , Animais , Anticorpos Monoclonais/imunologia , Linfócitos B/imunologia , Febre de Chikungunya/virologia , Modelos Animais de Doenças , Humanos , Células Matadoras Naturais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Viral , Baço/virologia , Linfócitos T/imunologia , Tropismo Viral
16.
PLoS Pathog ; 14(4): e1006973, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29652923

RESUMO

CD4+ T cells subsets have a wide range of important helper and regulatory functions in the immune system. Several studies have specifically suggested that circulating effector CD4+ T cells may play a direct role in control of HIV replication through cytolytic activity or autocrine ß-chemokine production. However, it remains unclear whether effector CD4+ T cells expressing cytolytic molecules and ß-chemokines are present within lymph nodes (LNs), a major site of HIV replication. Here, we report that expression of ß-chemokines and cytolytic molecules are enriched within a CD4+ T cell population with high levels of the T-box transcription factors T-bet and eomesodermin (Eomes). This effector population is predominately found in peripheral blood and is limited in LNs regardless of HIV infection or treatment status. As a result, CD4+ T cells generally lack effector functions in LNs, including cytolytic capacity and IFNγ and ß-chemokine expression, even in HIV elite controllers and during acute/early HIV infection. While we do find the presence of degranulating CD4+ T cells in LNs, these cells do not bear functional or transcriptional effector T cell properties and are inherently poor to form stable immunological synapses compared to their peripheral blood counterparts. We demonstrate that CD4+ T cell cytolytic function, phenotype, and programming in the peripheral blood is dissociated from those characteristics found in lymphoid tissues. Together, these data challenge our current models based on blood and suggest spatially and temporally dissociated mechanisms of viral control in lymphoid tissues.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vigilância Imunológica , Linfonodos/imunologia , Tecido Linfoide/imunologia , Linfócitos T CD4-Positivos/virologia , Estudos de Casos e Controles , Infecções por HIV/virologia , Humanos , Linfonodos/virologia , Tecido Linfoide/virologia , Carga Viral
17.
PLoS Pathog ; 14(11): e1007357, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30440043

RESUMO

Latently-infected CD4+ T cells are widely considered to be the major barrier to a cure for HIV. Much of our understanding of HIV latency comes from latency models and blood cells, but most HIV-infected cells reside in lymphoid tissues such as the gut. We hypothesized that tissue-specific environments may impact the mechanisms that govern HIV expression. To assess the degree to which different mechanisms inhibit HIV transcription in the gut and blood, we quantified HIV transcripts suggestive of transcriptional interference (U3-U5; "Read-through"), initiation (TAR), 5' elongation (R-U5-pre-Gag; "Long LTR"), distal transcription (Nef), completion (U3-polyA; "PolyA"), and multiple splicing (Tat-Rev) in matched peripheral blood mononuclear cells (PBMCs) and rectal biopsies, and matched FACS-sorted CD4+ T cells from blood and rectum, from two cohorts of ART-suppressed individuals. Like the PBMCs, rectal biopsies showed low levels of read-through transcripts (median = 23 copies/106 cells) and a gradient of total (679)>elongated(75)>Nef(16)>polyadenylated (11)>multiply-spliced HIV RNAs(<1) [p<0.05 for all], demonstrating blocks to HIV transcriptional elongation, completion, and splicing. Rectal CD4+ T cells showed a similar gradient of total>polyadenylated>multiply-spliced transcripts, but the ratio of total to elongated transcripts was 6-fold lower than in blood CD4+ T cells (P = 0.016), suggesting less of a block to HIV transcriptional elongation in rectal CD4+ T cells. Levels of total transcripts per provirus were significantly lower in rectal biopsies compared to PBMCs (median 3.5 vs. 15.4; P = 0.008) and in sorted CD4+ T cells from rectum compared to blood (median 2.7 vs. 31.8; P = 0.016). The lower levels of HIV transcriptional initiation and of most HIV transcripts per provirus in the rectum suggest that this site may be enriched for latently-infected cells, cells in which latency is maintained by different mechanisms, or cells in a "deeper" state of latency. These are important considerations for designing therapies that aim to disrupt HIV latency in all tissue compartments.


Assuntos
Infecções por HIV/metabolismo , HIV-1/fisiologia , Latência Viral/fisiologia , Adulto , Linfócitos T CD4-Positivos/virologia , Regulação Viral da Expressão Gênica/genética , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , HIV-1/genética , Humanos , Tecido Linfoide/virologia , Masculino , Pessoa de Meia-Idade , RNA Viral/metabolismo , Reto/virologia , Transcrição Gênica/fisiologia , Transcriptoma/genética
18.
PLoS Pathog ; 14(8): e1007269, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30125328

RESUMO

SERINC5 is a host restriction factor that impairs infectivity of HIV-1 and other primate lentiviruses and is counteracted by the viral accessory protein Nef. However, the importance of SERINC5 antagonism for viral replication and cytopathicity remained unclear. Here, we show that the Nef protein of the highly divergent SIVcol lineage infecting mantled guerezas (Colobus guereza) is a potent antagonist of SERINC5, although it lacks the CD4, CD3 and CD28 down-modulation activities exerted by other primate lentiviral Nefs. In addition, SIVcol Nefs decrease CXCR4 cell surface expression, suppress TCR-induced actin remodeling, and counteract Colobus but not human tetherin. Unlike HIV-1 Nef proteins, SIVcol Nef induces efficient proteasomal degradation of SERINC5 and counteracts orthologs from highly divergent vertebrate species, such as Xenopus frogs and zebrafish. A single Y86F mutation disrupts SERINC5 and tetherin antagonism but not CXCR4 down-modulation by SIVcol Nef, while mutation of a C-proximal di-leucine motif has the opposite effect. Unexpectedly, the Y86F change in SIVcol Nef had little if any effect on viral replication and CD4+ T cell depletion in preactivated human CD4+ T cells and in ex vivo infected lymphoid tissue. However, SIVcol Nef increased virion infectivity up to 10-fold and moderately increased viral replication in resting peripheral blood mononuclear cells (PBMCs) that were first infected with HIV-1 and activated three or six days later. In conclusion, SIVcol Nef lacks several activities that are conserved in other primate lentiviruses and utilizes a distinct proteasome-dependent mechanism to counteract SERINC5. Our finding that evolutionarily distinct SIVcol Nefs show potent anti-SERINC5 activity supports a relevant role of SERINC5 antagonism for viral fitness in vivo. Our results further suggest this Nef function is particularly important for virion infectivity under conditions of limited CD4+ T cell activation.


Assuntos
Linfócitos T CD4-Positivos/virologia , Produtos do Gene nef/fisiologia , HIV-1/fisiologia , Tecido Linfoide/virologia , Proteínas de Membrana/metabolismo , Replicação Viral/genética , Animais , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Colobus/virologia , Células HEK293 , Humanos , Células Jurkat , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Vírus da Imunodeficiência Símia/genética
19.
PLoS Pathog ; 14(2): e1006856, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29470552

RESUMO

HIV-1-infected cells persist indefinitely despite the use of combination antiretroviral therapy (ART), and novel therapeutic strategies to target and purge residual infected cells in individuals on ART are urgently needed. Here, we demonstrate that CD4+ T cell-associated HIV-1 RNA is often highly enriched in cells expressing CD30, and that cells expressing this marker considerably contribute to the total pool of transcriptionally active CD4+ lymphocytes in individuals on suppressive ART. Using in situ RNA hybridization studies, we show co-localization of CD30 with HIV-1 transcriptional activity in gut-associated lymphoid tissues. We also demonstrate that ex vivo treatment with brentuximab vedotin, an antibody-drug conjugate (ADC) that targets CD30, significantly reduces the total amount of HIV-1 DNA in peripheral blood mononuclear cells obtained from infected, ART-suppressed individuals. Finally, we observed that an HIV-1-infected individual, who received repeated brentuximab vedotin infusions for lymphoma, had no detectable virus in peripheral blood mononuclear cells. Overall, CD30 may be a marker of residual, transcriptionally active HIV-1 infected cells in the setting of suppressive ART. Given that CD30 is only expressed on a small number of total mononuclear cells, it is a potential therapeutic target of persistent HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Antígeno Ki-1/metabolismo , Tecido Linfoide/virologia , Reto/virologia , Ativação Transcricional , Fármacos Anti-HIV/farmacologia , Terapia Antirretroviral de Alta Atividade , Biomarcadores/sangue , Biomarcadores/metabolismo , Brentuximab Vedotin , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Células Cultivadas , Estudos de Coortes , DNA Viral/sangue , DNA Viral/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/efeitos dos fármacos , HIV-1/isolamento & purificação , HIV-1/patogenicidade , Humanos , Imunoconjugados/farmacologia , Hibridização In Situ , Antígeno Ki-1/antagonistas & inibidores , Antígeno Ki-1/sangue , Antígeno Ki-1/química , Tecido Linfoide/efeitos dos fármacos , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , RNA Viral/sangue , RNA Viral/metabolismo , Reto/efeitos dos fármacos , Reto/metabolismo , Reto/patologia , Solubilidade , Ativação Transcricional/efeitos dos fármacos , Carga Viral/efeitos dos fármacos
20.
Avian Pathol ; 49(4): 404-417, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32301627

RESUMO

Infectious laryngotracheitis virus (ILTV), an alphaherpesvirus, causes acute respiratory disease primarily infecting the upper respiratory tract and conjunctiva. Administration of live attenuated ILTV vaccines via eye drop, drinking water, or by coarse spray elicits protective mucosal immunity in the head-associated lymphoid tissues (HALT), of which conjunctiva-associated lymphoid tissue (CALT) and the Harderian gland (HG) are important tissue components. The trachea, a non-lymphoid tissue, also receives significant influx of inflammatory cells that dictate the outcome of ILTV infection. The objective of this study was to evaluate leukocyte cellular and phenotypic changes in the CALT, HG and trachea following ocular infection with a virulent ILTV strain. At 1, 3, 5, 7 and 9 days post-infection, CALT, HG, and trachea of 6-week-old specific pathogen free (SPF) chickens ocularly-exposed to vehicle or virulent ILTV strain 63140 were dissociated, the cells enumerated and then phenotyped using flow cytometry. The CALT had the highest viral genomic load, which peaked on day 3. In ILTV-infected birds, the CALT had a decreased percentage of leukocytes. This was reflected by decreased numbers of MHCI+MHCII-, MHCI+MHCIIlow+, and CD4+ cells, while IgM+ and MHCI+MHCIIHigh+ expressing cell populations increased. In the HG, the most notable change in cells from ILTV-infected birds was a decrease in IgM expressing cells and histologically, an increase in Mott cells. In summary, an acute, ocular exposure to ILTV strain 63140 in young birds shifts subsets of lymphocyte populations in the CALT and HG with minimal impact on the trachea.


Assuntos
Galinhas/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/imunologia , Imunidade nas Mucosas , Doenças das Aves Domésticas/virologia , Animais , Túnica Conjuntiva/virologia , Feminino , Glândula de Harder/virologia , Cabeça/virologia , Infecções por Herpesviridae/virologia , Leucócitos/imunologia , Tecido Linfoide/virologia , Masculino , Organismos Livres de Patógenos Específicos , Vacinas Atenuadas/imunologia , Carga Viral/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA