Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.671
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 611(7936): 548-553, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36323787

RESUMO

Real-time chemical sensing is crucial for applications in environmental and health monitoring1. Biosensors can detect a variety of molecules through genetic circuits that use these chemicals to trigger the synthesis of a coloured protein, thereby producing an optical signal2-4. However, the process of protein expression limits the speed of this sensing to approximately half an hour, and optical signals are often difficult to detect in situ5-8. Here we combine synthetic biology and materials engineering to develop biosensors that produce electrical readouts and have detection times of minutes. We programmed Escherichia coli to produce an electrical current in response to specific chemicals using a modular, eight-component, synthetic electron transport chain. As designed, this strain produced current following exposure to thiosulfate, an anion that causes microbial blooms, within 2 min. This amperometric sensor was then modified to detect an endocrine disruptor. The incorporation of a protein switch into the synthetic pathway and encapsulation of the bacteria with conductive nanomaterials enabled the detection of the endocrine disruptor in urban waterway samples within 3 min. Our results provide design rules to sense various chemicals with mass-transport-limited detection times and a new platform for miniature, low-power bioelectronic sensors that safeguard ecological and human health.


Assuntos
Técnicas Biossensoriais , Condutividade Elétrica , Poluentes Ambientais , Escherichia coli , Humanos , Técnicas Biossensoriais/métodos , Disruptores Endócrinos/análise , Escherichia coli/química , Escherichia coli/metabolismo , Nanoestruturas/química , Fatores de Tempo , Poluentes Ambientais/análise , Biologia Sintética , Transporte de Elétrons , Tiossulfatos/análise , Poluentes da Água/análise
2.
EMBO J ; 42(12): e112514, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946144

RESUMO

Increasing evidence has shown that light exists in a diverse range of deep-sea environments. We unexpectedly found that blue light is necessary to produce excess zero-valent sulfur (ZVS) in Erythrobacter flavus 21-3, a bacterium that has been recently isolated from a deep-sea cold seep. E. flavus 21-3 is able to convert thiosulfate to ZVS using a novel thiosulfate oxidation pathway comprising a thiosulfate dehydrogenase (TsdA) and a thiosulfohydrolase (SoxB). Using proteomic, bacterial two-hybrid and heterologous expression assays, we found that the light-oxygen-voltage histidine kinase LOV-1477 responds to blue light and activates the diguanylate cyclase DGC-2902 to produce c-di-GMP. Subsequently, the PilZ domain-containing protein mPilZ-1753 binds to c-di-GMP and activates TsdA through direct interaction. Finally, Raman spectroscopy and gene knockout results verified that TsdA and two SoxB homologs cooperate to regulate ZVS production. As ZVS is an energy source for E. flavus 21-3, we propose that deep-sea blue light provides E. flavus 21-3 with a selective advantage in the cold seep, suggesting a previously unappreciated relationship between light-sensing pathways and sulfur metabolism in a deep-sea microorganism.


Assuntos
Proteômica , Tiossulfatos , Tiossulfatos/metabolismo , Bactérias/metabolismo , Oxirredução , Enxofre/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
PLoS Biol ; 22(4): e3002601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656967

RESUMO

Uptake of thiosulfate ions as an inorganic sulfur source from the environment is important for bacterial sulfur assimilation. Recently, a selective thiosulfate uptake pathway involving a membrane protein YeeE (TsuA) in Escherichia coli was characterized. YeeE-like proteins are conserved in some bacteria, archaea, and eukaryotes. However, the precise function of YeeE, along with its potential partner protein in the thiosulfate ion uptake pathway, remained unclear. Here, we assessed selective thiosulfate transport via Spirochaeta thermophila YeeE in vitro and characterized E. coli YeeD (TsuB) as an adjacent and essential protein for YeeE-mediated thiosulfate uptake in vivo. We further showed that S. thermophila YeeD possesses thiosulfate decomposition activity and that a conserved cysteine in YeeD was modified to several forms in the presence of thiosulfate. Finally, the crystal structures of S. thermophila YeeE-YeeD fusion proteins at 3.34-Å and 2.60-Å resolutions revealed their interactions. The association was evaluated by a binding assay using purified S. thermophila YeeE and YeeD. Based on these results, a model of the sophisticated uptake of thiosulfate ions by YeeE and YeeD is proposed.


Assuntos
Escherichia coli , Sulfurtransferases , Tiossulfatos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/genética , Cristalografia por Raios X , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligação Proteica , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Tiossulfatos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(32): e2114799119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914169

RESUMO

Natural and anthropogenic wetlands are major sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic bacteria at the oxic-anoxic interface, a zone of intense redox cycling of carbon, sulfur, and nitrogen compounds. Here, we report on the isolation of an aerobic methanotrophic bacterium, 'Methylovirgula thiovorans' strain HY1, which possesses metabolic capabilities never before found in any methanotroph. Most notably, strain HY1 is the first bacterium shown to aerobically oxidize both methane and reduced sulfur compounds for growth. Genomic and proteomic analyses showed that soluble methane monooxygenase and XoxF-type alcohol dehydrogenases are responsible for methane and methanol oxidation, respectively. Various pathways for respiratory sulfur oxidation were present, including the Sox-rDsr pathway and the S4I system. Strain HY1 employed the Calvin-Benson-Bassham cycle for CO2 fixation during chemolithoautotrophic growth on reduced sulfur compounds. Proteomic and microrespirometry analyses showed that the metabolic pathways for methane and thiosulfate oxidation were induced in the presence of the respective substrates. Methane and thiosulfate could therefore be independently or simultaneously oxidized. The discovery of this versatile bacterium demonstrates that methanotrophy and thiotrophy are compatible in a single microorganism and underpins the intimate interactions of methane and sulfur cycles in oxic-anoxic interface environments.


Assuntos
Bactérias , Metano , Enxofre , Bactérias/metabolismo , Metano/metabolismo , Oxirredução , Proteômica , Enxofre/metabolismo , Tiossulfatos/metabolismo
5.
Biol Reprod ; 110(4): 772-781, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38195246

RESUMO

Cisplatin, a platinum-containing alkylating agent, is used in the treatment of various tumors owing to its potent antitumor activity. However, it causes permanent and adverse effects, particularly hearing loss and depletion of ovarian reserve. Until recently, there were no clinically available protective agents to mitigate the adverse side effects of cisplatin-induced cytotoxicity. In 2022, sodium thiosulfate (STS) was approved by the Food and Drug Administration for mitigating hearing loss in children and adolescents undergoing cisplatin treatment. Consequently, our investigation aimed to determine if STS could protect ovarian reserve against cisplatin-induced gonadotoxicity. In an ex vivo culture, the cisplatin-only group exhibited a loss of primordial follicles, while post-STS administration after cisplatin exposure effectively protected primordial follicles. However, when post-STS was administrated either 6 or 4 h after cisplatin exposure, it did not confer protection against cisplatin-induced gonadotoxicity in postnatal day 7 or adolescent mouse models. Immunofluorescence assays using γH2AX and cPARP revealed that oocytes within primordial follicles exhibited DNA damage after cisplatin exposure, irrespective of post-STS administration. This underscores the rapid and heightened sensitivity of oocytes to gonadotoxicity. In addition, oocytes demonstrated an increased expression of pCHK2 rather than pERK, suggesting that the pathway leading to oocyte death differs from the pathway observed in the inner ear cell death following cisplatin exposure. These results imply that while the administration of STS after cisplatin is highly beneficial in preventing hearing loss, it does not confer a protective effect on the ovaries in mouse models.


Assuntos
Antineoplásicos , Perda Auditiva , Reserva Ovariana , Tiossulfatos , Camundongos , Criança , Feminino , Animais , Adolescente , Humanos , Cisplatino/toxicidade , Antineoplásicos/toxicidade , Perda Auditiva/induzido quimicamente
6.
Nitric Oxide ; 149: 67-74, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897561

RESUMO

Sodium thiosulfate has been used for decades in the treatment of calciphylaxis and cyanide detoxification, and has recently shown initial therapeutic promise in critical diseases such as neuronal ischemia, diabetes mellitus, heart failure and acute lung injury. However, the precise mechanism of sodium thiosulfate remains incompletely defined and sometimes contradictory. Although sodium thiosulfate has been widely accepted as a donor of hydrogen sulfide (H2S), emerging findings suggest that it is the executive signaling molecule for H2S and that its effects may not be dependent on H2S. This article presents an overview of the current understanding of sodium thiosulfate, including its synthesis, biological characteristics, and clinical applications of sodium thiosulfate, as well as the underlying mechanisms in vivo. We also discussed the interplay of sodium thiosulfate and H2S. Our review highlights sodium thiosulfate as a key player in sulfide signaling with the broad clinical potential for the future.


Assuntos
Sulfeto de Hidrogênio , Transdução de Sinais , Tiossulfatos , Tiossulfatos/química , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Humanos , Animais , Transdução de Sinais/efeitos dos fármacos
7.
J Am Acad Dermatol ; 90(1): 45-51, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586460

RESUMO

BACKGROUND: Calciphylaxis is a thrombotic vasculopathy characterized by painful necrotic ulcerations. There are no Food and Drug Administration approved therapies despite high mortality. OBJECTIVE: To compare mortality and wound healing outcomes in patients treated with hyperbaric oxygen therapy (HBOT) in addition to intravenous sodium thiosulfate (IV STS) versus patients who received IV STS only. Findings were stratified by dialysis status and modality. METHODS: 93 patients were included, with 57 patients in the control group (IV STS) and 36 patients in the treatment group (HBOT + IV STS). Mortality data were analyzed with traditional survival analyses and Cox proportional hazard models. Longitudinal wound outcomes were analyzed with mixed effects modeling. RESULTS: Univariate survival analyses showed that full HBOT treatment was associated with significantly (P = .016) longer survival time. Increasing number of HBOT sessions was associated with improved mortality outcomes, with 1, 5, 10 and 20 sessions yielding decreasing hazard ratios. There was also a significant (P = .042) positive association between increasing number of HBOT sessions and increased wound score. LIMITATIONS: Data collection was retrospective. CONCLUSION: HBOT may have a role in the treatment of calciphylaxis with benefits demonstrated in both mortality and wound healing. Larger prospective studies are needed to identify which patients would most benefit from this intervention.


Assuntos
Calciofilaxia , Oxigenoterapia Hiperbárica , Humanos , Estudos Retrospectivos , Calciofilaxia/terapia , Calciofilaxia/tratamento farmacológico , Tiossulfatos/uso terapêutico
8.
BMC Nephrol ; 25(1): 26, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254024

RESUMO

BACKGROUND: Up to now, there is no unequivocal intervention to mitigate vascular calcification (VC) in patients with hemodialysis. This network meta-analysis aimed to systematically evaluate the clinical efficacy of sodium thiosulfate, bisphosphonates, and cinacalcet in treating vascular calcification. METHODS: A comprehensive study search was performed using PubMed, Web of Science, the Cochrane Library, EMBASE and China National Knowledge Internet (CNKI) to collect randomized controlled trials (RCTs) of sodium thiosulfate, bisphosphonates, and cinacalcet for vascular calcification among hemodialysis patients. Then, network meta-analysis was conducted using Stata 17.0 software. RESULTS: In total, eleven RCTs including 1083 patients were qualified for this meta-analysis. We found that cinacalcet (SMD - 0.59; 95% CI [-0.95, -0.24]) had significant benefit on vascular calcification compared with conventional therapy, while sodium thiosulfate or bisphosphonates did not show such efficiency. Furthermore, as for ranking the efficacy assessment, cinacalcet possessed the highest surface under the cumulative ranking curve (SUCRA) value (88.5%) of lessening vascular calcification and was superior to sodium thiosulfate (50.4%) and bisphosphonates (55.4%). Thus, above results suggested that cinacalcet might be the most promising drug for vascular calcification treatment in hemodialysis patients. Mechanistically, our findings illustrated that cinacalcet reduced serum calcium (SMD - 1.20; 95% CI [-2.08, - 0.33]) and showed the tendency in maintaining the balance of intact Parathyroid Hormone (iPTH) level. CONCLUSIONS: This network meta-analysis indicated that cinacalcet appear to be more effective than sodium thiosulfate and bisphosphonates in mitigating vascular calcification through decreasing serum calcium and iPTH. And cinacalcet might be a reasonable option for hemodialysis patients with VC in clinical practice. SYSTEMATIC REVIEW REGISTRATION: [ http://www.crd.york.ac.uk/PROSPERO ], identifier [CRD42022379965].


Assuntos
Difosfonatos , Tiossulfatos , Calcificação Vascular , Humanos , Difosfonatos/uso terapêutico , Cinacalcete/uso terapêutico , Metanálise em Rede , Cálcio , Calcificação Vascular/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
Ecotoxicol Environ Saf ; 274: 116210, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479311

RESUMO

Thiosulfate influences the bioreduction and migration transformation of arsenic (As) and iron (Fe) in groundwater environments. The aim of this study was to investigate the impact of microbially-mediated sulfur cycling on the bioreduction and interaction of As and Fe. Microcosm experiments were conducted, including bioreduction of thiosulfate, As(V), and Fe(III) by Citrobacter sp. JH012-1, as well as the influence of thiosulfate input at different initial arsenate concentrations on the bioreduction of As(V) and Fe(III). The results demonstrate that Citrobacter sp. JH012-1 exhibited strong reduction capabilities for thiosulfate, As(V), and Fe(III). Improving thiosulfate level promoted the bioreduction of Fe(III) and As(V). When 0, 0.1, 0.5, and 1 mM thiosulfate were added, Fe(III) was completely reduced within 9 days, 3 days, 1 day, and 0.5 days, simultaneously, 72.8%, 82.2%, 85.5%, and 90.0% of As(V) were reduced, respectively. The products of As(III) binding with sulfide are controlled by the ratio of As-S. When the initial arsenate concentration was 0.025 mM, the addition of thiosulfate resulted in the accumulation of soluble thioarsenite. However, when the initial arsenate level increased to 1 mM, precipitates of orpiment or realgar were formed. In the presence of both arsenic and iron, As(V) significantly inhibits the bioreduction of Fe(III). Under the concentrations of 0, 0.025, and 1 mM As(V), the reduction rates of Fe(III) were 100%, 91%, and 83%, respectively. In this scenario, the sulfide produced by thiosulfate reduction tends to bind with Fe(II) rather than As(III). Therefore, the competition of arsenic-iron and thiosulfate concentration should be considered to study the impact of thiosulfate on arsenic and iron migration and transformation in groundwater.


Assuntos
Arsênio , Água Subterrânea , Ferro/análise , Arsênio/metabolismo , Arseniatos , Tiossulfatos , Oxirredução , Sulfetos , Compostos Férricos/metabolismo
10.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000305

RESUMO

Nitrosyl iron complexes are remarkably multifactorial pharmacological agents. These compounds have been proven to be particularly effective in treating cardiovascular and oncological diseases. We evaluated and compared the antioxidant activity of tetranitrosyl iron complexes (TNICs) with thiosulfate ligands and dinitrosyl iron complexes (DNICs) with glutathione (DNIC-GS) or phosphate (DNIC-PO4-) ligands in hemoglobin-containing systems. The studied effects included the production of free radical intermediates during hemoglobin (Hb) oxidation by tert-butyl hydroperoxide, oxidative modification of Hb, and antioxidant properties of nitrosyl iron complexes. Measuring luminol chemiluminescence revealed that the antioxidant effect of TNICs was higher compared to DNIC-PO4-. DNIC-GS either did not exhibit antioxidant activity or exerted prooxidant effects at certain concentrations, which might have resulted from thiyl radical formation. TNICs and DNIC-PO4- efficiently protected the Hb heme group from decomposition by organic hydroperoxides. DNIC-GS did not exert any protective effects on the heme group; however, it abolished oxoferrylHb generation. TNICs inhibited the formation of Hb multimeric forms more efficiently than DNICs. Thus, TNICs had more pronounced antioxidant activity than DNICs in Hb-containing systems.


Assuntos
Antioxidantes , Hemoglobinas , Ferro , Fosfatos , Tiossulfatos , Tiossulfatos/farmacologia , Tiossulfatos/química , Hemoglobinas/metabolismo , Hemoglobinas/química , Ferro/metabolismo , Ferro/química , Fosfatos/química , Fosfatos/metabolismo , Ligantes , Antioxidantes/farmacologia , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Oxirredução/efeitos dos fármacos , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/farmacologia , Óxidos de Nitrogênio/metabolismo , Glutationa/metabolismo , Animais
11.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396887

RESUMO

Kidney transplantation is preferred for end-stage renal disease. The current gold standard for kidney preservation is static cold storage (SCS) at 4 °C. However, SCS contributes to renal graft damage through ischemia-reperfusion injury (IRI). We previously reported renal graft protection after SCS with a hydrogen sulfide donor, sodium thiosulfate (STS), at 4 °C. Therefore, this study aims to investigate whether SCS at 10 °C with STS and Hemopure (blood substitute), will provide similar protection. Using in vitro model of IRI, we subjected rat renal proximal tubular epithelial cells to hypoxia-reoxygenation for 24 h at 10 °C with or without STS and measured cell viability. In vivo, we preserved 36 donor kidneys of Lewis rats for 24 h in a preservation solution at 10 °C supplemented with STS, Hemopure, or both followed by transplantation. Tissue damage and recipient graft function parameters, including serum creatinine, blood urea nitrogen, urine osmolality, and glomerular filtration rate (GFR), were evaluated. STS-treated proximal tubular epithelial cells exhibited enhanced viability at 10 °C compared with untreated control cells (p < 0.05). Also, STS and Hemopure improved renal graft function compared with control grafts (p < 0.05) in the early time period after the transplant, but long-term function did not reach significance. Overall, renal graft preservation at 10 °C with STS and Hemopure supplementation has the potential to enhance graft function and reduce kidney damage, suggesting a novel approach to reducing IRI and post-transplant complications.


Assuntos
Hemoglobinas , Transplante de Rim , Traumatismo por Reperfusão , Tiossulfatos , Ratos , Animais , Preservação de Órgãos , Sobrevivência de Enxerto , Ratos Endogâmicos Lew , Rim , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle
12.
Bull Exp Biol Med ; 177(2): 266-270, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39093476

RESUMO

The efficiency of combinations of cytostatics cisplatin and adriamycin with antioxidant sodium 3-(3'-tert-butyl-4-hydroxyphenyl)propyl thiosulfate (TS-13), and nitric oxide (NO) donor NaNO2 was evaluated on two drug-resistant strains of leukemia P388 with changed redox-status of cells. Simultaneous use of both NO donor and TS-13 in combinations with the cytostatics did not increase the efficiency of therapy. In addition, antioxidant activity of TS-13, NaNO2, and their combinations was studied by the method of luminol-dependent chemiluminescence on the model systems with the use of the homogenized cells of sensitive strain and two drug-resistant strains of leukemia P388. It was shown that TS-13 and NO donor produced opposite effects: TS-13 decreased, while NO donor increased the content of free radicals in the model system. Combinations of antioxidant TS-13 and NO donor should be used with consideration for the redox-status of tumor treated.


Assuntos
Antioxidantes , Cisplatino , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Leucemia P388 , Doadores de Óxido Nítrico , Oxirredução , Animais , Camundongos , Oxirredução/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antioxidantes/farmacologia , Doxorrubicina/farmacologia , Leucemia P388/tratamento farmacológico , Leucemia P388/patologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Doadores de Óxido Nítrico/farmacologia , Tiossulfatos/farmacologia , Nitrito de Sódio/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
13.
Proteomics ; 23(10): e2200138, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36790022

RESUMO

Chlorobaculum tepidum is an anaerobic green sulfur bacterium which oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. It can also oxidize sulfide to produce extracellular S0 globules, which can be further oxidized to sulfate and used as an electron donor. Here, we performed label-free quantitative proteomics on total cell lysates prepared from different metabolic states, including a sulfur production state (10 h post-incubation [PI]), the beginning of sulfur consumption (20 h PI), and the end of sulfur consumption (40 h PI), respectively. We observed an increased abundance of the sulfide:quinone oxidoreductase (Sqr) proteins in 10 h PI indicating a sulfur production state. The periplasmic thiosulfate-oxidizing Sox enzymes and the dissimilatory sulfite reductase (Dsr) subunits showed an increased abundance in 20 h PI, corresponding to the sulfur-consuming state. In addition, we found that the abundance of the heterodisulfide-reductase and the sulfhydrogenase operons was influenced by electron donor availability and may be associated with sulfur metabolism. Further, we isolated and analyzed the extracellular sulfur globules in the different metabolic states to study their morphology and the sulfur cluster composition, yielding 58 previously uncharacterized proteins in purified globules. Our results show that C. tepidum regulates the cellular levels of enzymes involved in sulfur metabolism in response to the availability of reduced sulfur compounds.


Assuntos
Chlorobi , Proteômica , Enxofre , Chlorobi/metabolismo , Oxirredução , Proteômica/métodos , Sulfetos/metabolismo , Enxofre/metabolismo , Tiossulfatos/metabolismo , Fotossíntese
14.
Environ Microbiol ; 25(10): 1925-1939, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37231629

RESUMO

Sulphur-driven denitrification is a low-cost process for the treatment of nitrate-contaminated water. However, a comprehensive understanding of core populations and microbial interactions of a sulphur-based denitrifying system is lacking. This study presents results from three replicated denitrifying systems amended with thiosulphate and operated under a low C/N ratio. Amplicon sequencing revealed gradual enrichments of a few abundant denitrifiers. Based on genome-centred metagenomics and metatranscriptomics, a core set of microbes was identified in the systems, with Pseudomonas 1 and Thauera 2 being the most abundant ones. Although the replicates showed different enrichments, generalized observations were summarized. Most core populations conserved energy from denitrification coupled with sulphur. Pseudomonas 1 and Thauera 2 were able to finish complete denitrification. Surprisingly, they were also able to synthesize almost all amino acids and vitamins. In contrast, less abundant members, including Pseudomonas 2, were relatively auxotrophic and required an exogenous supply of amino acids and vitamins. The high expression of enzymes involved in biosynthesis and transport systems indicated their syntrophic relationships. The genomic findings suggested life strategies and interactions of the core thiosulphate-based denitrifying microbiome, with implications for nitrate-polluted water remediation.


Assuntos
Nitratos , Tiossulfatos , Nitratos/metabolismo , Desnitrificação , Enxofre , Vitaminas , Aminoácidos , Água , Reatores Biológicos , Nitrogênio/metabolismo
15.
Proc Biol Sci ; 290(1990): 20221973, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629118

RESUMO

The shallow-water hydrothermal vent system of Kueishan Island has been described as one of the world's most acidic and sulfide-rich marine habitats. The only recorded metazoan species living in the direct vicinity of the vents is Xenograpsus testudinatus, a brachyuran crab endemic to marine sulfide-rich vent systems. Despite the toxicity of hydrogen sulfide, X. testudinatus occupies an ecological niche in a sulfide-rich habitat, with the underlying detoxification mechanism remaining unknown. Using laboratory and field-based experiments, we characterized the gills of X. testudinatus that are the major site of sulfide detoxification. Here sulfide is oxidized to thiosulfate or bound to hypotaurine to generate the less toxic thiotaurine. Biochemical and molecular analyses demonstrated that the accumulation of thiosulfate and hypotaurine is mediated by the sodium-independent sulfate anion transporter (SLC26A11) and taurine transporter (Taut), which are expressed in gill epithelia. Histological and metagenomic analyses of gill tissues demonstrated a distinct bacterial signature dominated by Epsilonproteobacteria. Our results suggest that thiotaurine synthesized in gills is used by sulfide-oxidizing endo-symbiotic bacteria, creating an effective sulfide-buffering system. This work identified physiological mechanisms involving host-microbe interactions that support life of a metazoan in one of the most extreme environments on our planet.


Assuntos
Braquiúros , Fontes Hidrotermais , Animais , Tiossulfatos , Sulfetos/toxicidade , Braquiúros/fisiologia , Bactérias
16.
World J Urol ; 41(11): 2959-2966, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37782324

RESUMO

PURPOSE: To perform a systematic review of case reports and case series to investigate risk factors, treatment modalities, and the outcome of penile calciphylaxis. METHOD: We performed a systematic search of the MEDLINE and Scopus databases to identify case reports or case series of penile calciphylaxis. The patient characteristics, laboratory investigations, diagnostic modalities, treatment modalities, and outcomes were extracted. We compared clinical characteristics and treatment between patients who survived or demised and between patients with clinical improvement and those without to identify the poor prognostic risk factors. RESULTS: Ninety-four articles were included from 86 case reports and 8 case series with 121 patients. Most of the patients were on hemodialysis (78.9%). The median time since starting dialysis was 48 months (24-96 months). Sodium thiosulfate was used to treat penile calciphylaxis in 23.6%. For surgical management, partial or total penectomy was performed in 45.5% of the patients. There was no association between sodium thiosulfate use, partial or total penectomy, and improvement in clinical outcomes. The mortality rate in patients with penile calciphylaxis was 47.8% and the median time to death was 3 months (0.75-9 months). The presence of extragenital involvement was significantly related to mortality (p = 0.03). CONCLUSION: A calcified penile artery results in penile calciphylaxis, a rare vascular phenomenon associated with high morbidity and mortality. Management of penile calciphylaxis includes the medical management of risk factors, surgical debridement, or penectomy. Therefore, early prevention and diagnosis as well as immediate appropriate treatment are needed.


Assuntos
Calciofilaxia , Falência Renal Crônica , Humanos , Masculino , Calciofilaxia/diagnóstico , Calciofilaxia/terapia , Calciofilaxia/complicações , Pênis , Fatores de Risco , Tiossulfatos/uso terapêutico , Relatos de Casos como Assunto
17.
Artigo em Inglês | MEDLINE | ID: mdl-37610813

RESUMO

A novel bacterial strain, N1Y112T, was isolated from coastal sediment collected in Weihai, PR China. This Gram-stain-negative, facultatively anaerobic, motile rod-shaped bacterium exhibited the ability to oxidize thiosulphate to sulphate and reduce nitrate to ammonia through its Sox system and nitrate reduction pathway, respectively. The strain grew at 20-35 °C (optimum, 28 °C), pH 6.0-10.0 (optimum, pH 7.5) and in the presence of 1.0-5.0 % (w/v) NaCl (optimum, 3.0 %). Major fatty acids present in the strain included summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 0. Its polar lipid profile consisted of one phosphatidylethanolamine, two unknown aminolipids, one aminophosphoglycolipid, one diphosphatidylglycerol, one phosphatidylglycerol, two unknown phospholipids and two unknown lipids. Strain N1Y112T contained ubiquinone-7 and ubiquinone-8 as isoprenoid quinones, with a genomic G+C content of 50.6 mol%. Based on phylogenetic analysis, strain N1Y112T clustered with Pontibacterium granulatum JCM 30316T being its closest relative at 97.1 % 16S rRNA gene sequence similarity. The average nucleotide identity and digital DNA-DNA hybridization values were 77.1 and 20.7 %, respectively, which suggest significant differences between genomes of N1Y112T and P. granulatum JCM 30316T. Based on the findings from its phenotypic, genotypic and phylogenetic analyses, N1Y112T is considered to represent a novel species of the genus Pontibacterium, for which the name Pontibacterium sinense sp. nov. is proposed. The type strain is N1Y112T (=KCTC 72927T=MCCC 1H00429T).


Assuntos
Nitratos , Ubiquinona , Tiossulfatos , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Bactérias , Oxirredução
18.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37921642

RESUMO

A novel mesophilic, hydrogen- and thiosulfate-oxidizing bacterium, strain ISO32T, was isolated from diffuse-flow hydrothermal fluids from the Crab Spa vent on the East Pacific Rise. Cells of ISO32T were rods, being motile by means of a single polar flagellum. The isolate grew at a temperature range between 30 and 55 °C (optimum, 43 °C), at a pH range between 5.3 and 7.6 (optimum, pH 5.8) and in the presence of 2.0-4.0 % NaCl (optimum, 2.5 %). The isolate was able to grow chemolithoautotrophically with molecular hydrogen, thiosulfate or elemental sulfur as the sole electron donor. Thiosulfate, elemental sulfur, nitrate and molecular oxygen were each used as a sole electron acceptor. Phylogenetic analysis of 16S rRNA gene sequences placed ISO32T in the genus Hydrogenimonas of the class Epsilonproteobacteria, with Hydrogenimonas thermophila EP1-55-1 %T as its closest relative (95.95 % similarity). On the basis of the phylogenetic, physiological and genomic characteristics, it is proposed that the organism represents a novel species within the genus Hydrogenimonas, Hydrogenimonas cancrithermarum sp. nov. The type strain is ISO32T (=JCM 39185T =KCTC 25252T). Furthermore, the genomic properties of members of the genus Hydrogenimonas are distinguished from those of members of other thermophilic genera in the orders Campylobacterales (Nitratiruptor and Nitrosophilus) and Nautiliales (Caminibacter, Nautilia and Lebetimonas), with larger genome sizes and lower 16S rRNA G+C content values. Comprehensive metabolic comparisons based on genomes revealed that genes responsible for the Pta-AckA pathway were observed exclusively in members of mesophilic genera in the order Campylobacterales and of the genus Hydrogenimonas. Our results indicate that the genus Hydrogenimonas contributes to elucidating the evolutionary history of Epsilonproteobacteria in terms of metabolism and transition from a thermophilic to a mesophilic lifestyle.


Assuntos
DNA Bacteriano , Epsilonproteobacteria , Tiossulfatos/metabolismo , Água do Mar/microbiologia , Filogenia , Hidrogênio/metabolismo , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Composição de Bases , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Campylobacterales/metabolismo , Oxirredução , Enxofre/metabolismo
19.
Microb Ecol ; 86(4): 2781-2789, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37552473

RESUMO

To better understand bacterial communities and metabolism under nitrogen deficiency, 154 seawater samples were obtained from 5 to 200 m at 22 stations in the photic zone of the Western North Pacific Ocean. Total 634 nitrate-utilizing bacteria were isolated using selective media and culture-dependent methods, and 295 of them were positive for nitrate reduction. These nitrate-reducing bacteria belonged to 19 genera and 29 species and among them, Qipengyuania flava, Roseibium aggregatum, Erythrobacter aureus, Vibrio campbellii, and Stappia indica were identified from all tested seawater layers of the photic zone and at almost all stations. Twenty-nine nitrate-reducing strains representing different species were selected for further the study of nitrogen, sulfur, and carbon metabolism. All 29 nitrate-reducing isolates contained genes encoding dissimilatory nitrate reduction or assimilatory nitrate reduction. Six nitrate-reducing isolates can oxidize thiosulfate based on genomic analysis and activity testing, indicating that nitrate-reducing thiosulfate-oxidizing bacteria exist in the photic zone. Five nitrate-reducing isolates obtained near the chlorophyll a-maximum layer contained a dimethylsulfoniopropionate synthesis gene and three of them contained both dimethylsulfoniopropionate synthesis and cleavage genes. This suggests that nitrate-reducing isolates may participate in dimethylsulfoniopropionate synthesis and catabolism in photic seawater. The presence of multiple genes for chitin degradation and extracellular peptidases may indicate that almost all nitrate-reducing isolates (28/29) can use chitin and proteinaceous compounds as important sources of carbon and nitrogen. Collectively, these results reveal culturable nitrate-reducing bacterial diversity and have implications for understanding the role of such strains in the ecology and biogeochemical cycles of nitrogen, sulfur, and carbon in the oligotrophic marine photic zone.


Assuntos
Nitratos , Tiossulfatos , Oceano Pacífico , Clorofila A , Água do Mar/microbiologia , Enxofre/metabolismo , Nitrogênio/metabolismo , Carbono , Quitina , Filogenia
20.
Environ Res ; 231(Pt 2): 116219, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224950

RESUMO

The coexistence of reduced sulfur (-2) compounds (S2-, FeS and SCN-) are found in some industrial wastewaters due to pre-treatment of Fe(II) salts. These compounds as electron donors have attracted increasing interest in autotrophic denitrification process. However, the difference of their functions still remain unknown, which limit efficient utilization in autotrophic denitrification process. The study aimed to investigate and compare utilization behavior of these reduced sulfur (-2) compounds in autotrophic denitrification process activated by thiosulfate-driven autotrophic denitrifiers (TAD). Results showed that the best denitrification performance was observed in SCN-; while the reduction of nitrate was significantly inhibited in S2- system and the efficient accumulation of nitrite was observed in FeS system with cycle experiments continuing. Additionally, intermediates containing sulfur were produced rarely in SCN- system. However, the utilization of SCN- was limited obviously in comparison with S2- in coexistence systems. Moreover, the presence of S2- increased the accumulation peak of nitrite in coexistence systems. The biological results indicated that the TAD utilized rapidly these sulfur (-2) compounds, in which genus of Thiobacillus, Magnetospirillum and Azoarcus might play main roles. Moreover, Cupriavidus might also participate in sulfur oxidation in SCN- system. In conclusion, these might be attributed to the characteristics of sulfur (-2) compounds including the toxicity, solubility and reaction process. These findings provide theoretical basis for regulation and utilization of these reduced sulfur (-2) compounds in autotrophic denitrification process.


Assuntos
Nitritos , Racepinefrina , Tiossulfatos , Desnitrificação , Reatores Biológicos , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA