RESUMO
BACKGROUND: A healthy heart is able to modify its function and increase relaxation through post-translational modifications of myofilament proteins. While there are known examples of serine/threonine kinases directly phosphorylating myofilament proteins to modify heart function, the roles of tyrosine (Y) phosphorylation to directly modify heart function have not been demonstrated. The myofilament protein TnI (troponin I) is the inhibitory subunit of the troponin complex and is a key regulator of cardiac contraction and relaxation. We previously demonstrated that TnI-Y26 phosphorylation decreases calcium-sensitive force development and accelerates calcium dissociation, suggesting a novel role for tyrosine kinase-mediated TnI-Y26 phosphorylation to regulate cardiac relaxation. Therefore, we hypothesize that increasing TnI-Y26 phosphorylation will increase cardiac relaxation in vivo and be beneficial during pathological diastolic dysfunction. METHODS: The signaling pathway involved in TnI-Y26 phosphorylation was predicted in silico and validated by tyrosine kinase activation and inhibition in primary adult murine cardiomyocytes. To investigate how TnI-Y26 phosphorylation affects cardiac muscle, structure, and function in vivo, we developed a novel TnI-Y26 phosphorylation-mimetic mouse that was subjected to echocardiography, pressure-volume loop hemodynamics, and myofibril mechanical studies. TnI-Y26 phosphorylation-mimetic mice were further subjected to the nephrectomy/DOCA (deoxycorticosterone acetate) model of diastolic dysfunction to investigate the effects of increased TnI-Y26 phosphorylation in disease. RESULTS: Src tyrosine kinase is sufficient to phosphorylate TnI-Y26 in cardiomyocytes. TnI-Y26 phosphorylation accelerates in vivo relaxation without detrimental structural or systolic impairment. In a mouse model of diastolic dysfunction, TnI-Y26 phosphorylation is beneficial and protects against the development of disease. CONCLUSIONS: We have demonstrated that tyrosine kinase phosphorylation of TnI is a novel mechanism to directly and beneficially accelerate myocardial relaxation in vivo.
Assuntos
Cálcio , Troponina I , Camundongos , Animais , Fosforilação , Troponina I/genética , Cálcio/metabolismo , Processamento de Proteína Pós-Traducional , Contração Miocárdica/fisiologia , Miofibrilas/metabolismo , Proteínas Tirosina Quinases , Tirosina/metabolismo , Tirosina/farmacologiaRESUMO
BACKGROUND: Impaired left ventricular relaxation, high filling pressures, and dysregulation of Ca2+ homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort, which suggests the potential involvement of myofilament regulators in relaxation. A molecular-level understanding of mechanism(s) at the level of the myofilament is lacking. We hypothesized that mutation-specific, allosterically mediated, changes to the cTnC (cardiac troponin C)-cTnI (cardiac troponin I) interface can account for the development of early-onset diastolic dysfunction via decreased PKA accessibility to cTnI. METHODS: HCM mutations R92L-cTnT (cardiac troponin T; Arg92Leu) and Δ160E-cTnT (Glu160 deletion) were studied in vivo, in vitro, and in silico via 2-dimensional echocardiography, Western blotting, ex vivo hemodynamics, stopped-flow kinetics, time-resolved fluorescence resonance energy transfer, and molecular dynamics simulations. RESULTS: The HCM-causative mutations R92L-cTnT and Δ160E-cTnT result in different time-of-onset diastolic dysfunction. R92L-cTnT demonstrated early-onset diastolic dysfunction accompanied by a localized decrease in phosphorylation of cTnI. Constitutive phosphorylation of cTnI (cTnI-D23D24) was sufficient to recover diastolic function to non-Tg levels only for R92L-cTnT. Mutation-specific changes in Ca2+ dissociation rates associated with R92L-cTnT reconstituted with cTnI-D23D24 led us to investigate potential involvement of structural changes in the cTnC-cTnI interface as an explanation for these observations. We probed the interface via time-resolved fluorescence resonance energy transfer revealing a repositioning of the N-terminus of cTnI, closer to cTnC, and concomitant decreases in distance distributions at sites flanking the PKA consensus sequence. Implementing time-resolved fluorescence resonance energy transfer distances as constraints into our atomistic model identified additional electrostatic interactions at the consensus sequence. CONCLUSIONS: These data show that the early diastolic dysfunction observed in a subset of HCM is attributable to allosterically mediated structural changes at the cTnC-cTnI interface that impair accessibility of PKA, thereby blunting ß-adrenergic responsiveness and identifying a potential molecular target for therapeutic intervention.
Assuntos
Cardiomiopatia Hipertrófica , Proteínas Quinases Dependentes de AMP Cíclico , Troponina I , Troponina T , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Animais , Troponina I/genética , Troponina I/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Troponina T/genética , Troponina T/metabolismo , Humanos , Troponina C/genética , Troponina C/metabolismo , Simulação de Dinâmica Molecular , Mutação , Camundongos , MasculinoRESUMO
In our previous study, intranuclear cardiac troponin I (cTnI) may function as a co-factor of Yin Yang 1(YY1). Here, we aimed to explore the role of intranuclear cTnI in ageing hearts. Nuclear translocation of cTnI was demonstrated using Western blot and immunofluorescence. The potential nuclear localization sequences (NLSs) of cTnI were predicted by a web server and then verified in 293T cells by putative NLS-eGFP-GST and NLS-mutant transfection. The ratio of Nuclear cTnI/ Total cTnI (Nu/T) decreased significantly in ageing hearts, accompanied with ATG5-decline-related impaired cardiac autophagy. RNA sequencing was performed in cTnI knockout hearts. The differential expressed genes (DEGs) were analysed by overlapping with YY1 ChIP-sequencing data. cTnI gain and loss experiments in vitro determined those filtered DEGs' expression levels. A strong correlation was found between expression patterns cTnI and FOS. Using ChIP-q-PCR, we demonstrated that specific binding DNA sequences of cTnI were enriched in the FOS promoter -299 to -157 region. It was further verified that pcDNA3.1 (-)-cTnI could increase the promoter activity of FOS by using luciferase report assay. At last, we found that FOS can regulate the ATG5 (autophagy-related gene 5) gene by using a luciferase report assay. Taken together, our results indicate that decreased intranuclear cTnI in ageing hearts may cause impaired cardiac autophagy through the FOS/ATG5 pathway.
Assuntos
Envelhecimento , Proteína 5 Relacionada à Autofagia , Autofagia , Núcleo Celular , Miocárdio , Troponina I , Troponina I/metabolismo , Troponina I/genética , Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Envelhecimento/metabolismo , Envelhecimento/genética , Animais , Miocárdio/metabolismo , Humanos , Núcleo Celular/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos , Células HEK293 , Masculino , Regiões Promotoras Genéticas , Regulação da Expressão Gênica , Miócitos Cardíacos/metabolismo , Camundongos KnockoutRESUMO
This study aimed to investigate the relationship between pre- and postexercise cardiac biomarker release according to athletic status (trained vs. untrained) and to establish whether the I/D polymorphism in the angiotensin-converting enzyme (ACE) gene had an influence on cardiac biomarkers release with specific regard on the influence of the training state. We determined cardiac troponin I (cTnI) and N-terminal pro-brain natriuretic peptide (NT-proBNP) in 29 trained and 27 untrained male soccer players before and after moderate-intensity continuous exercise (MICE) and high-intensity interval exercise (HIIE) running tests. Trained soccer players had higher pre (trained: 0.014 ± 0.007 ng/mL; untrained: 0.010 ± 0.005 ng/mL) and post HIIE (trained: 0.031 ± 0.008 ng/mL; untrained: 0.0179 ± 0.007) and MICE (trained: 0.030 ± 0.007 ng/mL; untrained: 0.018 ± 0.007) cTnI values than untrained subjects, but the change with exercise (ΔcTnI) was similar between groups. There was no significant difference in baseline and postexercise NT-proBNP between groups. NT-proBNP levels were elevated after both HIIE and MICE. Considering three ACE genotypes, the mean pre exercise cTnI values of the trained group (DD: 0.015 ± 0.008 ng/mL, ID: 0.015 ± 0.007 ng/mL, and II: 0.014 ± 0.008 ng/mL) and their untrained counterparts (DD: 0.010 ± 0.004 ng/mL, ID: 0.011 ± 0.004 ng/mL, and II: 0.010 ± 0.006 ng/mL) did not show any significant difference. To sum up, noticeable difference in baseline cTnI was observed, which was related to athletic status but not ACE genotypes. Neither athletic status nor ACE genotypes seemed to affect the changes in cardiac biomarkers in response to HIIE and MICE, indicating that the ACE gene does not play a significant role in the release of exercise-induced cardiac biomarkers indicative of cardiac damage in Iranian soccer players.NEW & NOTEWORTHY Our study investigated the impact of athletic status and angiotensin-converting enzyme (ACE) gene I/D polymorphism on cardiac biomarkers in soccer players. Trained players showed higher baseline cardiac troponin I (cTnI) levels, whereas postexercise ΔcTnI remained consistent across groups. N-terminal pro-brain natriuretic peptide increased after exercise in both groups, staying within normal limits. ACE genotypes did not significantly affect pre-exercise cTnI. Overall, athletic status influences baseline cTnI, but neither it nor ACE genotypes significantly impact exercise-induced cardiac biomarker responses in this population.
Assuntos
Biomarcadores , Exercício Físico , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Peptidil Dipeptidase A , Polimorfismo Genético , Troponina I , Masculino , Humanos , Peptidil Dipeptidase A/genética , Biomarcadores/sangue , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/genética , Troponina I/sangue , Troponina I/genética , Fragmentos de Peptídeos/sangue , Exercício Físico/fisiologia , Adulto Jovem , Adulto , Treinamento Intervalado de Alta Intensidade/métodos , Futebol/fisiologia , Mutação INDEL/genética , Coração/fisiologiaRESUMO
Haplolethals (HL) are regions of diploid genomes that in one dose are fatal for the organism. Their biological meaning is obscure because heterozygous loss-of-function mutations result in dominant lethality (DL) and, consequently, should be under strong negative selection. We report an in depth study of the HL associated to the gene wings up A (wupA). It encodes 13 transcripts (A-M) that yield 11 protein isoforms (A-K) of Troponin I (TnI). They are functionally diverse in their control of muscle contraction, cell polarity and cell proliferation. Isoform K transfers to the nucleus where it increases transcription of the cell proliferation related genes CDK2, CDK4, Rap and Rab5. The nuclear translocation of isoform K is prevented by the co-expression of A or B isoforms, which illustrates isoform interactions. The corresponding DL mutations are, either DNA rearrangements clustered towards the gene 3' end, thus affecting the genomic organization of all transcripts, or CRISPR-induced mutations in one of the two ATG sites which eliminate a subset of wupA products. The joint elimination of isoforms C, F, G and H, however, do not cause DL phenotypes. Genetically driven expression of single isoforms rescue neither DL nor any of the mutants known in the gene, suggesting that normal function requires properly regulated expression of specific combinations, rather than single, TnI isoforms. We conclude that the wupA associated HL results from the combined haploinsufficiency of a large set of TnI isoforms. The qualitative and quantitative normal expression of which, requires the chromosomal integrity of the wupA genomic region. Since all fly TnI isoforms are encoded in the same gene, its HL condition becomes unavoidable. These wupA features are comparable to those of dpp, the only other HL studied to some extent, and reveal a scenario of strict dosage dependence with implications for gene expression regulation and splitting.
Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Haplótipos , Mutações Sintéticas Letais , Troponina I/genética , Animais , Duplicação Cromossômica , Mapeamento Cromossômico , Feminino , Regulação da Expressão Gênica , Estudos de Associação Genética , Masculino , FenótipoRESUMO
BACKGROUND: Cardiac troponin (cTn) T and cTnI are considered cardiac specific and equivalent in the diagnosis of acute myocardial infarction. Previous studies suggested rare skeletal myopathies as a noncardiac source of cTnT. We aimed to confirm the reliability/cardiac specificity of cTnT in patients with various skeletal muscle disorders (SMDs). METHODS: We prospectively enrolled patients presenting with muscular complaints (≥2 weeks) for elective evaluation in 4 hospitals in 2 countries. After a cardiac workup, patients were adjudicated into 3 predefined cardiac disease categories. Concentrations of cTnT/I and resulting cTnT/I mismatches were assessed with high-sensitivity (hs-) cTnT (hs-cTnT-Elecsys) and 3 hs-cTnI assays (hs-cTnI-Architect, hs-cTnI-Access, hs-cTnI-Vista) and compared with those of control subjects without SMD presenting with adjudicated noncardiac chest pain to the emergency department (n=3508; mean age, 55 years; 37% female). In patients with available skeletal muscle biopsies, TNNT/I1-3 mRNA differential gene expression was compared with biopsies obtained in control subjects without SMD. RESULTS: Among 211 patients (mean age, 57 years; 42% female), 108 (51%) were adjudicated to having no cardiac disease, 44 (21%) to having mild disease, and 59 (28%) to having severe cardiac disease. hs-cTnT/I concentrations significantly increased from patients with no to those with mild and severe cardiac disease for all assays (all P<0.001). hs-cTnT-Elecsys concentrations were significantly higher in patients with SMD versus control subjects (median, 16 ng/L [interquartile range (IQR), 7-32.5 ng/L] versus 5 ng/L [IQR, 3-9 ng/L]; P<0.001), whereas hs-cTnI concentrations were mostly similar (hs-cTnI-Architect, 2.5 ng/L [IQR, 1.2-6.2 ng/L] versus 2.9 ng/L [IQR, 1.8-5.0 ng/L]; hs-cTnI-Access, 3.3 ng/L [IQR, 2.4-6.1 ng/L] versus 2.7 ng/L [IQR, 1.6-5.0 ng/L]; and hs-cTnI-Vista, 7.4 ng/L [IQR, 5.2-13.4 ng/L] versus 7.5 ng/L [IQR, 6-10 ng/L]). hs-cTnT-Elecsys concentrations were above the upper limit of normal in 55% of patients with SMD versus 13% of control subjects (P<0.01). mRNA analyses in skeletal muscle biopsies (n=33), mostly (n=24) from individuals with noninflammatory myopathy and myositis, showed 8-fold upregulation of TNNT2, encoding cTnT (but none for TNNI3, encoding cTnI) versus control subjects (n=16, PWald<0.001); the expression correlated with pathological disease activity (R=0.59, Pt-statistic<0.001) and circulating hs-cTnT concentrations (R=0.26, Pt-statistic=0.031). CONCLUSIONS: In patients with active chronic SMD, elevations in cTnT concentrations are common and not attributable to cardiac disease in the majority. This was not observed for cTnI and may be explained in part by re-expression of cTnT in skeletal muscle. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03660969.
Assuntos
Cardiopatias/metabolismo , Doenças Musculares/metabolismo , Troponina I/metabolismo , Troponina T/metabolismo , Biomarcadores , Estudos de Casos e Controles , Feminino , Cardiopatias/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Musculares/diagnóstico , Estudos Prospectivos , RNA Mensageiro/análise , Reprodutibilidade dos Testes , Troponina I/genética , Troponina T/genéticaRESUMO
Circulating cardiac troponin proteins are associated with structural heart disease and predict incident cardiovascular disease in the general population. However, the genetic contribution to cardiac troponin I (cTnI) concentrations and its causal effect on cardiovascular phenotypes are unclear. We combine data from two large population-based studies, the Trøndelag Health Study and the Generation Scotland Scottish Family Health Study, and perform a genome-wide association study of high-sensitivity cTnI concentrations with 48 115 individuals. We further use two-sample Mendelian randomization to investigate the causal effects of circulating cTnI on acute myocardial infarction (AMI) and heart failure (HF). We identified 12 genetic loci (8 novel) associated with cTnI concentrations. Associated protein-altering variants highlighted putative functional genes: CAND2, HABP2, ANO5, APOH, FHOD3, TNFAIP2, KLKB1 and LMAN1. Phenome-wide association tests in 1688 phecodes and 83 continuous traits in UK Biobank showed associations between a genetic risk score for cTnI and cardiac arrhythmias, metabolic and anthropometric measures. Using two-sample Mendelian randomization, we confirmed the non-causal role of cTnI in AMI (5948 cases, 355 246 controls). We found indications for a causal role of cTnI in HF (47 309 cases and 930 014 controls), but this was not supported by secondary analyses using left ventricular mass as outcome (18 257 individuals). Our findings clarify the biology underlying the heritable contribution to circulating cTnI and support cTnI as a non-causal biomarker for AMI in the general population. Using genetically informed methods for causal inference helps inform the role and value of measuring cTnI in the general population.
Assuntos
Biomarcadores , Genética Populacional , Estudo de Associação Genômica Ampla , Troponina I/genética , Alelos , Mapeamento Cromossômico , Expressão Gênica , Variação Genética , Análise da Randomização Mendeliana , Especificidade de Órgãos , Locos de Características Quantitativas , Troponina T/genéticaRESUMO
TNNI2 at 11p15.5 encodes troponin I2, fast skeletal type, which is a member of the troponin I gene family and a component of the troponin complex. Distal arthrogryposis (DA) is characterized by congenital limb contractures without primary neurological or muscular effects. DA is inherited in an autosomal dominant fashion and is clinically and genetically heterogeneous. Exome sequencing identified a causative variant in TNNI2 [NM_003282.4:c.532T>C p.(Phe178Leu)] in a Japanese girl with typical DA2b. Interestingly, the familial study using Sanger sequencing suggested a mosaic variant in her healthy father. Subsequent targeted amplicon-based deep sequencing detected the TNNI2 variant with variant allele frequencies of 9.4-17.7% in genomic DNA derived from peripheral blood leukocytes, saliva, hair, and nails in the father. We confirmed a disease-causing variant in TNNI2 in the proband inherited from her asymptomatic father with its somatic variant. Our case demonstrates that careful clinical and genetic evaluation is required in DA.
Assuntos
Artrogripose , Humanos , Feminino , Masculino , Artrogripose/genética , Mosaicismo , Troponina I/genética , Sarcômeros , Linhagem , PaiRESUMO
CRISPR-based biosensing technology has been emerging as a revolutionary diagnostic tool for many disease-related biomarkers. In particular, RspCas13d, a newly identified RNA-guided Cas13d ribonuclease derived from Ruminococcus sp., has shown great promise for accurate and sensitive detection of RNA due to its RNA sequence-specific recognition and robust collateral trans-cleavage activity. However, its diagnostic utility is limited to detecting nucleic-acid-related biomarkers. To address this limitation, herein we present a proof-of-concept demonstration of a target-responsive CRISPR-Cas13d sensing system for protein biomarkers. This system was rationally designed by integrating a dual-aptamer-based transcription amplification strategy with CRISPR-Cas13d (DATAS-Cas13d), in which the protein binding initiates in-vitro RNA transcription followed by the activation of RspCas13d. Using a short fluorescent ssRNA as the signal reporter and cardiac troponin I (cTnI) as the model analyte, the DATAS-Cas13d system showed a wide linear range, low detection limit, and high specificity for the detection of cTnI in buffer and human serum. Thanks to the facile integration of various bioreceptors into the DATAS-Cas13d system, the method could be adapted to detecting a broad range of clinically relevant protein biomarkers, and thus broaden the medical applications of Cas13d-based diagnostics.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , RNA , Troponina I/genética , Técnicas Biossensoriais/métodos , BiomarcadoresRESUMO
[Figure: see text].
Assuntos
Algoritmos , Sinalização do Cálcio , Cálcio/metabolismo , Ensaios de Triagem em Larga Escala , Processamento de Imagem Assistida por Computador , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia de Fluorescência , Miócitos Cardíacos/metabolismo , Animais , Automação Laboratorial , Células Cultivadas , Cobaias , Humanos , Cinética , Mutação de Sentido Incorreto , Troponina I/genética , Troponina I/metabolismo , Fluxo de TrabalhoRESUMO
INTRODUCTION: The risk of cardiotoxicity is associated with the use of anabolic-androgenic steroids and analgesics, several deaths were attributed to such medications. OBJECTIVES: This study investigates the effects of boldenone (BOLD) and tramadol (TRAM) alone or in combination on the heart. MATERIAL AND METHODS: Forty adult male rats were divided into four groups. Normal control group, BOLD (5 mg/kg, i.m.) per week, tramadol Hcl (TRAM) (20 mg/kg, i.p.) daily and a combination of BOLD (5 mg/kg) and TRAM (20 mg/kg), respectively for two months. Serum and cardiac tissue were extracted for determination of serum, aspartate aminotransferase (AST), creatine phosphokinase (CPK) and lipid profiles, tissue malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), tumour necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and histopathological examination. Troponin I gene expression was quantified in cardiac tissue using real-time polymerase chain reaction technique. RESULTS: Groups received BOLD and TRAM alone and in combination showed elevated serum biochemical parameters (AST, CPK) and deviations in lipid profiles, elevation in oxidative and inflammatory parameters (MDA, NO, TNF-α and IL-6), and decrease in GSH and SOD, up-regulated cardiac troponin I as well as distorted cardiac histopathological pictures. CONCLUSION: The current study elucidated the risk of administration of these drugs for sustained periods as well as the marked detrimental effects of using these drugs in combination.
Assuntos
Miocárdio , Tramadol , Ratos , Masculino , Animais , Miocárdio/metabolismo , Troponina I/genética , Troponina I/metabolismo , Tramadol/toxicidade , Tramadol/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Doxorrubicina , Estresse Oxidativo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismoRESUMO
The cardiac thin filament comprises F-actin, tropomyosin, and troponin (cTn). cTn is composed of three subunits: troponin C (cTnC), troponin I (cTnI), and troponin T (cTnT). To computationally study the effect of the thin filament on cTn activation events, we employed targeted molecular dynamics followed by umbrella sampling using a model of the thin filament to measure the thermodynamics of cTn transition events. Our simulations revealed that the thin filament causes an increase in the free energy required to open the cTnC hydrophobic patch and causes a more favorable interaction between this region and the cTnI switch peptide. Mutations to the cTn complex can lead to cardiomyopathy, a collection of diseases that present clinically with symptoms of hypertrophy or dilation of the cardiac muscle, leading to impairment of the heart's ability to function normally and ultimately myocardial infarction or heart failure. Upon introduction of cardiomyopathic mutations to R145 of cTnI, we observed a general decrease in the free energy of opening the cTnC hydrophobic patch, which is on par with previous experimental results. These mutations also exhibited a decrease in electrostatic interactions between cTnI-R145 and actin-E334. After introduction of a small molecule to the wild-type cTnI-actin interface to intentionally disrupt intersubunit contacts, we successfully observed similar thermodynamic consequences and disruptions to the same protein-protein contacts as observed with the cardiomyopathic mutations. Computational studies utilizing the cTn complex in isolation would have been unable to observe these effects, highlighting the importance of using a more physiologically relevant thin-filament model to investigate the global consequences of cardiomyopathic mutations to the cTn complex.
Assuntos
Actinas , Troponina I , Troponina I/genética , Troponina I/química , Actinas/genética , Mutação , Termodinâmica , Peptídeos/genética , CálcioRESUMO
Exercise stress can cause reversible myocardial ischemia in people with coronary artery disease (CAD). On the other hand, the new troponin biomarker with high sensitivity can detect faster and small amounts of troponin in blood circulation. The present study aimed to investigate the serum troponin level following exercise stress and the result of nuclear heart scans as the gold standard. For this purpose, 93 patients with stable angina and no history of known CAD and organic disease were included in this cross-sectional study. The serum level of the highly sensitive cardiac troponin I (hs-cTnI) was measured 75 minutes after the peak of the exercise test and reached at least 85% of the maximum heart rate. It was compared with the rate of reversible myocardial ischemia based on the nuclear heart scan, the three-month prognosis and the persistence of chest pain were investigated. Also, the expression level of the cTnI gene was evaluated by real-time PCR technique. The results showed that the average age of the patients was 58.9+12.4 years, and 62 (66.66%) patients were female. Reversible myocardial ischemia was observed in 31 patients. The relationship between hs-cTI level and the rate of reversible ischemia cases was significant (p = 0.0041). Also, the cTnI gene expression showed the same results as the serum level. According to the heart nuclear scan report, the hs-cTnI value above 1.6ng/dl had a specificity of 72% and sensitivity of 66%, a positive predictive value of 53%, and a negative predictive value of 78%. There was no significant relationship between hs-cTnI level and prognosis and the continuation of chest pain in patients after three months. Generally, the serum level of high-sensitivity cardiac troponin was higher after exercise in the group with reversible myocardial ischemia.
Assuntos
Angina Estável , Doença da Artéria Coronariana , Isquemia Miocárdica , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Troponina I/genética , Estudos Transversais , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/genética , Dor no Peito , Angina Estável/diagnóstico por imagem , Angina Estável/genética , Expressão GênicaRESUMO
We tested the hypothesis that isoform shifts in sarcomeres of the immature heart modify the effect of cardiac myosin-directed sarcomere inhibitors and activators. Omecamtiv mecarbil (OM) activates tension and is in clinical trials for the treatment of adult acute and chronic heart failure. Mavacamten (Mava) inhibits tension and is in clinical trials to relieve hypercontractility and outflow obstruction in advanced genetic hypertrophic cardiomyopathy (HCM), which is often linked to mutations in sarcomeric proteins. To address the effect of these agents in developing sarcomeres, we isolated heart fiber bundles, extracted membranes with Triton X-100, and measured tension developed over a range of Ca2+ concentrations with and without OM or Mava treatment. We made measurements in fiber bundles from hearts of adult nontransgenic (NTG) controls expressing cardiac troponin I (cTnI), and from hearts of transgenic (TG-ssTnI) mice expressing the fetal/neonatal form, slow skeletal troponin I (ssTnI). We also compared fibers from 7- and 14-day-old NTG mice expressing ssTnI and cTnI. These studies were repeated with 7- and 14-day-old transgenic mice (TG-cTnT-R92Q) expressing a mutant form of cardiac troponin T (cTnT) linked to HCM. OM increased Ca2+-sensitivity and decreased cooperative activation in both ssTnI- and cTnI-regulated myofilaments with a similar effect: reducing submaximal tension in immature and mature myofilaments. Although Mava decreased tension similarly in cTnI- and ssTnI-regulated myofilaments controlled either by cTnT or cTnT-R92Q, its effect involved a depressed Ca2+-sensitivity in the mature cTnT-R92 myofilaments. Our data demonstrate an influence of myosin and thin-filament associated proteins on the actions of myosin-directed agents such as OM and Mava. SIGNIFICANCE STATEMENT: The effects of myosin-targeted activators and inhibitors on Ca2+-activated tension in developing cardiac sarcomeres presented here provide novel, ex vivo evidence as to their actions in early-stage cardiac disorders. These studies advance understanding of the molecular mechanisms of these agents, which are important in preclinical studies employing sarcomere Ca2+-response as a screening approach. The data also inform the use of commonly immature cardiac myocytes generated from human-inducible pluripotent stem cells in screening for sarcomere activators and inhibitors.
Assuntos
Miofibrilas , Sarcômeros , Animais , Cálcio/metabolismo , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Miocárdio/metabolismo , Miócitos Cardíacos , Miofibrilas/metabolismo , Miosinas/metabolismo , Miosinas/farmacologia , Troponina I/genética , Troponina I/metabolismo , Troponina I/farmacologiaRESUMO
The conserved C-terminal end segment of troponin I (TnI) plays a critical role in regulating muscle relaxation. This function is retained in the isolated C-terminal 27 amino acid peptide (residues 184-210) of human cardiac TnI (HcTnI-C27): When added to skinned muscle fibers, HcTnI-C27 reduces the Ca2+-sensitivity of activated myofibrils and facilitates relaxation without decreasing the maximum force production. However, the underlying mechanism of HcTnI-C27 function is unknown. We studied the conformational preferences of HcTnI-C27 and a myopathic mutant, Arg192His, (HcTnI-C27-H). Both peptides were mainly disordered in aqueous solution with a nascent helix involving residues from Trp191 to Ile195, as shown by NMR analysis and molecular dynamics simulations. The population of nascent helix was smaller in HcTnI-C27-H than in HcTnI-C27, as shown by circular dichroism (CD) titrations. Fluorescence and isothermal titration calorimetry (ITC) showed that both peptides bound tropomyosin (αTm), with a detectably higher affinity (â¼10 µM) of HcTnI-C27 than that of HcTnI-C27-H (â¼15 µM), consistent with an impaired Ca2+-desensitization effect of the mutant peptide on skinned muscle strips. Upon binding to αTm, HcTnI-C27 acquired a weakly stable helix-like conformation involving residues near Trp191, as shown by transferred nuclear Overhauser effect spectroscopy and hydrogen/deuterium exchange experiments. With the potent Ca2+-desensitization effect of HcTnI-C27 on skinned cardiac muscle from a mouse model of hypertrophic cardiomyopathy, the data support that the C-terminal end domain of TnI can function as an isolated peptide with the intrinsic capacity of binding tropomyosin, providing a promising therapeutic approach to selectively improve diastolic function of the heart.
Assuntos
Cardiomiopatia Hipertrófica/genética , Fibras Musculares Esqueléticas/metabolismo , Miofibrilas/metabolismo , Peptídeos/química , Tropomiosina/metabolismo , Troponina I/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/prevenção & controle , Modelos Animais de Doenças , Expressão Gênica , Humanos , Cinética , Camundongos , Simulação de Acoplamento Molecular , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Relaxamento Muscular , Mutação , Miofibrilas/efeitos dos fármacos , Miofibrilas/patologia , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tropomiosina/química , Tropomiosina/genética , Troponina I/genética , Troponina I/metabolismoRESUMO
Troponin-based Ca2+ regulation of striated muscle contraction emerged approximately 700 million years ago with largely conserved functions during evolution. Troponin I (TnI) is the inhibitory subunit of troponin and has evolved into three muscle type-specific isoforms in vertebrates. Cardiac TnI is specifically expressed in the adult heart and has a unique N-terminal extension implicating a specific value during natural selection. The N-terminal extension of cardiac TnI in higher vertebrates contains ß-adrenergic-regulated protein kinase A (PKA) phosphorylation sites as a mechanism to enhance cardiac muscle relaxation and facilitate ventricular filling. Phylogenic studies showed that the N-terminal extension of cardiac TnI first emerged in the genomes of early tetrapods as well as primordial lobe-finned fishes such as the coelacanth whereas it is absent in ray-finned fish. This apparently rapid evolution of ß-adrenergic regulation of cardiac function suggests a high selection value for the heart of vertebrate animals on land to work under higher metabolic demands. Sequencing and PKA phosphorylation data showed that lungfish cardiac TnI has evolved with an amphibian-like N-terminal extension with prototype PKA phosphorylation sites while its overall structure remained fish like. The data demonstrate that the submolecular structure of TnI may evolve ahead of the whole protein for cardiac muscle contractility to adapt to new environmental conditions. Understanding the evolution of the ß-adrenergic regulation of TnI and cardiac adaptation to the increased energetic demands of life on land adds knowledge for the treatment of human heart diseases and failure.
Assuntos
Coração , Miocárdio , Troponina I , Adrenérgicos/metabolismo , Animais , Peixes , Miocárdio/metabolismo , Fosforilação , Troponina I/química , Troponina I/genética , Troponina I/metabolismoRESUMO
The cardiac isoform of troponin I has a unique N-terminal extension (~ 1-30 amino acids), which contributes to the modulation of cardiac contraction and relaxation. Hearts of various species including humans produce a truncated variant of cardiac troponin I (cTnI-ND) deleting the first ~ 30 amino acids as an adaption in pathophysiological conditions. In this study, we investigated the impact of cTnI-ND chronic expression in transgenic mouse hearts compared to wildtype (WT) controls (biological n = 8 in each group). We aimed to determine the global phosphorylation effects of cTnI-ND on the cardiac proteome, thereby determining the signaling pathways that have an impact on cardiac function. The samples were digested and isobarically labeled and equally mixed for relative quantification via nanoLC-MS/MS. The peptides were then enriched for phospho-peptides and bioinformatic analysis was done with Ingenuity Pathway Analysis (IPA). We found approximately 77% replacement of the endogenous intact cTnI with cTnI-ND in the transgenic mouse hearts with 1674 phospho-proteins and 2971 non-modified proteins. There were 73 significantly altered phospho-proteins; bioinformatic analysis identified the top canonical pathways as associated with integrin, protein kinase A, RhoA, and actin cytoskeleton signaling. Among the 73 phospho-proteins compared to controls cTnI-ND hearts demonstrated a significant decrease in paxillin and YAP1, which are known to play a role in cell mechano-sensing pathways. Our data indicate that cTnI-ND modifications in the sarcomere are sufficient to initiate changes in the phospho-signaling profile that may underly the chronic-adaptive response associated with cTnI cleavage in response to stressors by modifying mechano-sensitive signaling pathways.
Assuntos
Espectrometria de Massas em Tandem , Troponina I , Aminoácidos , Animais , Cálcio/metabolismo , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Miocárdio/metabolismo , Peptídeos , Fosforilação , Transdução de Sinais , Troponina I/química , Troponina I/genética , Troponina I/metabolismoRESUMO
BACKGROUND: Restrictive cardiomyopathy (RCM) presents a high risk for sudden cardiac death in pediatric patients. Constrictive pericarditis (CP) exhibits a similar clinical presentation to RCM and requires differential diagnosis. While mutations of genes that encode sarcomeric and cytoskeletal proteins may lead to RCM, infection, rather than gene mutation, is the main cause of CP. Genetic testing may be helpful in the clinical diagnosis of RCM. METHODS: In this case series study, we screened for TNNI3, TNNT2, and DES gene mutations that are known to be etiologically linked to RCM in four pediatric patients with suspected RCM. RESULTS: We identified one novel heterozygous mutation, c.517C>T (substitution, position 517 C â T) (amino acid conversion, p.Leu173Phe), and two already known heterozygous mutations, c.508C>T (substitution, position 508, C â T) (amino acid conversion, p.Arg170Trp) and c.575G>A (substitution, position 575, G â A) (amino acid conversion, p.Arg192His), in the TNNI3 gene in three of the four patients. CONCLUSION: Our findings support the notion that genetic testing may be helpful in the clinical diagnosis of RCM.
Assuntos
Cardiomiopatia Restritiva , Testes Genéticos , Pericardite Constritiva , Aminoácidos/genética , Cardiomiopatia Restritiva/diagnóstico , Cardiomiopatia Restritiva/genética , Criança , Desmina/genética , Testes Genéticos/métodos , Humanos , Mutação , Pericardite Constritiva/diagnóstico , Troponina I/genética , Troponina T/genéticaRESUMO
Sudden unexpected death of an infant (SUDI) is a devastating occurrence for families. To investigate the genetic pathogenesis of SUDI, we sequenced >70 genes from 191 autopsy-negative SUDI victims. Ten infants sharing a previously unknown variant in troponin I (TnI) were identified. The mutation (TNNI1 R37C+/-) is in the fetal/neonatal paralog of TnI, a gene thought to be expressed in the heart up to the first 24 months of life. Using phylogenetic analysis and molecular dynamics simulations, it was determined that arginine at residue 37 in TNNI1 may play a critical functional role, suggesting that the variant may be pathogenic. We investigated the biophysical properties of the TNNI1 R37C mutation in human reconstituted thin filaments (RTFs) using fluorometry. RTFs reconstituted with the mutant R37C TnI exhibited reduced Ca2+-binding sensitivity due to an increased Ca2+ off-rate constant. Furthermore, we generated TNNI1 R37C+/- mutants in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) using CRISPR-Cas9. In monolayers of hiPSC-CMs, we simultaneously monitored voltage and Ca2+ transients through optical mapping and compared them to their isogenic controls. We observed normal intrinsic beating patterns under control conditions in TNNI1 R37C+/- at stimulation frequencies of 55 beats/min (bpm), but these cells showed no restitution with increased stimulation frequency to 65 bpm and exhibited alternans at >75 bpm. The WT hiPSC-CMs did not exhibit any sign of arrhythmogenicity even at stimulation frequencies of 120 bpm. The approach used in this study provides critical physiological and mechanistic bases to investigate sarcomeric mutations in the pathogenesis of SUDI.
Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Morte Súbita do Lactente/genética , Troponina I , Cálcio/química , Cálcio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Recém-Nascido , Contração Miocárdica/genética , Miócitos Cardíacos/patologia , Sarcômeros/genética , Sarcômeros/metabolismo , Sarcômeros/patologia , Morte Súbita do Lactente/patologia , Troponina I/química , Troponina I/genética , Troponina I/metabolismoRESUMO
OBJECTIVES: Observational studies have shown that elevated circulating cardiac troponin I (cTnI) concentrations were linked to higher risk of stroke and atrial fibrillation, but the causality remains unclear. Therefore, we used mendelian randomization to assess the potential causal effects of cTnI concentrations on the risk of stroke, its subtypes and atrial fibrillation. MATERIALS AND METHODS: The instrumental variables for circulating cTnI concentrations were selected from a genome-wide association study meta-analysis of 48,115 European individuals. We examined the associations of circulating cTnI concentrations with stroke, ischemic stroke, ischemic stroke subtypes (cardioembolic, large artery, small vessel stroke), intracerebral hemorrhage and atrial fibrillation. RESULTS: Genetically predicted elevated circulating cTnI concentrations were associated with higher risk of cardioembolic stroke (odds ratio [OR], 1.80; 95% confidence interval [CI], 1.20-2.68; P = 0.004), but not associated with large artery stroke, small vessel stroke, total stroke, ischemic stroke and intracerebral hemorrhage. Additionally, we also found that elevated cTnI concentrations were causally linked to higher risk of atrial fibrillation (OR, 1.30; 95% CI, 1.10-1.53; P = 0.003). CONCLUSIONS: This study provides evidence that genetically predicted circulating cTnI concentrations are causally linked to higher risk of cardioembolic stroke and atrial fibrillation.