Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7984): 810-817, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37853121

RESUMO

Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.


Assuntos
Aves , Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Internacionalidade , Animais , África/epidemiologia , Animais Selvagens/virologia , Ásia/epidemiologia , Aves/virologia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Surtos de Doenças/veterinária , Europa (Continente)/epidemiologia , Evolução Molecular , Especificidade de Hospedeiro , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/mortalidade , Influenza Aviária/transmissão , Influenza Aviária/virologia , Mamíferos/virologia , Mutação , Filogenia , Aves Domésticas/virologia
2.
J Virol ; 98(3): e0140123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38358287

RESUMO

Since 2020, clade 2.3.4.4b highly pathogenic avian influenza H5N8 and H5N1 viruses have swept through continents, posing serious threats to the world. Through comprehensive analyses of epidemiological, genetic, and bird migration data, we found that the dominant genotype replacement of the H5N8 viruses in 2020 contributed to the H5N1 outbreak in the 2021/2022 wave. The 2020 outbreak of the H5N8 G1 genotype instead of the G0 genotype produced reassortment opportunities and led to the emergence of a new H5N1 virus with G1's HA and MP genes. Despite extensive reassortments in the 2021/2022 wave, the H5N1 virus retained the HA and MP genes, causing a significant outbreak in Europe and North America. Furtherly, through the wild bird migration flyways investigation, we found that the temporal-spatial coincidence between the outbreak of the H5N8 G1 virus and the bird autumn migration may have expanded the H5 viral spread, which may be one of the main drivers of the emergence of the 2020-2022 H5 panzootic.IMPORTANCESince 2020, highly pathogenic avian influenza (HPAI) H5 subtype variants of clade 2.3.4.4b have spread across continents, posing unprecedented threats globally. However, the factors promoting the genesis and spread of H5 HPAI viruses remain unclear. Here, we found that the spatiotemporal genotype replacement of H5N8 HPAI viruses contributed to the emergence of the H5N1 variant that caused the 2021/2022 panzootic, and the viral evolution in poultry of Egypt and surrounding area and autumn bird migration from the Russia-Kazakhstan region to Europe are important drivers of the emergence of the 2020-2022 H5 panzootic. These findings provide important targets for early warning and could help control the current and future HPAI epidemics.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Animais , Aves , Genótipo , Vírus da Influenza A/fisiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/fisiologia , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Filogenia , Aves Domésticas
3.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36703230

RESUMO

Migratory birds play a critical role in the rapid spread of highly pathogenic avian influenza (HPAI) H5N8 virus clade 2.3.4.4 across Eurasia. Elucidating the timing and pattern of virus transmission is essential therefore for understanding the spatial dissemination of these viruses. In this study, we surveyed >27,000 wild birds in China, tracked the year-round migration patterns of 20 bird species across China since 2006, and generated new HPAI H5N8 virus genomic data. Using this new data set, we investigated the seasonal transmission dynamics of HPAI H5N8 viruses across Eurasia. We found that introductions of HPAI H5N8 viruses to different Eurasian regions were associated with the seasonal migration of wild birds. Moreover, we report a backflow of HPAI H5N8 virus lineages from Europe to Asia, suggesting that Europe acts as both a source and a sink in the global HPAI virus transmission network.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Animais , Vírus da Influenza A Subtipo H5N8/genética , Aves , Vírus da Influenza A/genética , Animais Selvagens , Influenza Aviária/epidemiologia , Europa (Continente)/epidemiologia , Ásia/epidemiologia , Filogenia , Surtos de Doenças
4.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289661

RESUMO

During the UK 2020-2021 epizootic of H5Nx clade 2.3.4.4b high-pathogenicity avian influenza viruses (HPAIVs), high mortality occurred during incursions in commercially farmed common pheasants (Phasianus colchicus). Two pheasant farms, affected separately by H5N8 and H5N1 subtypes, included adjacently housed red-legged partridges (Alectoris rufa), which appeared to be unaffected. Despite extensive ongoing epizootics, H5Nx HPAIV partridge outbreaks were not reported during 2020-2021 and 2021-2022 in the UK, so it is postulated that partridges are more resistant to HPAIV infection than other gamebirds. To assess this, pathogenesis and both intra- and inter-species transmission of UK pheasant-origin H5N8-2021 and H5N1-2021 HPAIVs were investigated. Onward transmission to chickens was also assessed to better understand the risk of spread from gamebirds to other commercial poultry sectors. A lower infectious dose was required to infect pheasants with H5N8-2021 compared to H5N1-2021. However, HPAIV systemic dissemination to multiple organs within pheasants was more rapid following infection with H5N1-2021 than H5N8-2021, with the former attaining generally higher viral RNA levels in tissues. Intraspecies transmission to contact pheasants was successful for both viruses and associated with viral environmental contamination, while interspecies transmission to a first chicken-contact group was also efficient. However, further onward transmission to additional chicken contacts was only achieved with H5N1-2021. Intra-partridge transmission was only successful when high-dose H5N1-2021 was administered, while partridges inoculated with H5N8-2021 failed to shed and transmit, although extensive tissue tropism was observed for both viruses. Mortalities among infected partridges featured a longer incubation period compared to that in pheasants, for both viruses. Therefore, the susceptibility of different gamebird species and pathogenicity outcomes to the ongoing H5Nx clade 2.3.4.4b HPAIVs varies, but pheasants represent a greater likelihood of H5Nx HPAIV introduction into galliforme poultry settings. Consequently, viral maintenance within gamebird populations and risks to poultry species warrant enhanced investigation.


Assuntos
Galliformes , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Animais , Virulência , Galinhas
5.
Vet Res ; 55(1): 100, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135123

RESUMO

High pathogenicity avian influenza viruses (HPAIVs) have caused major epizootics in recent years, with devastating consequences for poultry and wildlife worldwide. Domestic and wild ducks can be highly susceptible to HPAIVs, and infection leads to efficient viral replication and massive shedding (i.e., high titres for an extended time), contributing to widespread viral dissemination. Importantly, ducks are known to shed high amounts of virus in the earliest phase of infection, but the dynamics and impact of environmental contamination on the epidemiology of HPAIV outbreaks are poorly understood. In this study, we monitored mule ducks experimentally infected with two H5N8 clade 2.3.4.4b goose/Guangdong HPAIVs sampled in France in 2016-2017 and 2020-2021 epizootics. We investigated viral shedding dynamics in the oropharynx, cloaca, conjunctiva, and feathers; bird-to-bird viral transmission; and the role of the environment in viral spread and as a source of samples for early detection and surveillance. Our findings showed that viral shedding started before the onset of clinical signs, i.e., as early as 1 day post-inoculation (dpi) or post-contact exposure, peaked at 4 dpi, and lasted for up to 14 dpi. The detection of viral RNA in aerosols, dust, and water samples mirrored viral shedding dynamics, and viral isolation from these environmental samples was successful throughout the experiment. Our results confirm that mule ducks can shed high HPAIV titres through the four excretion routes tested (oropharyngeal, cloacal, conjunctival, and feather) while being asymptomatic and that environmental sampling could be a non-invasive tool for early viral RNA detection in HPAIV-infected farms.


Assuntos
Patos , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Doenças das Aves Domésticas , Eliminação de Partículas Virais , Animais , Patos/virologia , Influenza Aviária/virologia , Vírus da Influenza A Subtipo H5N8/fisiologia , Vírus da Influenza A Subtipo H5N8/patogenicidade , Doenças das Aves Domésticas/virologia , França/epidemiologia
6.
Emerg Infect Dis ; 29(1): 170-174, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573541

RESUMO

In late 2021, highly pathogenic avian influenza A(H5N8) clade 2.3.4.4b viruses were detected in domestic ducks in poultry markets in Cambodia. Surveillance, biosafety, and biosecurity efforts should be bolstered along the poultry value chain to limit spread and infection risk at the animal-human interface.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Influenza Humana , Doenças das Aves Domésticas , Animais , Humanos , Influenza Aviária/epidemiologia , Camboja/epidemiologia , Aves , Patos , Aves Domésticas , Filogenia
7.
J Gen Virol ; 104(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37351928

RESUMO

During the 2020/21 winter season, 29 and 10 H5N8 high pathogenicity avian influenza viruses (HPAIVs) were isolated from environmental water and wild birds, respectively, in Kagoshima prefecture, Japan. Furthermore, seven subtypes of low pathogenicity avian influenza viruses (LPAIVs) were also isolated; H1N1, H2N9, H3N2, H3N6, H3N8, H4N6, and H6N6 subtypes. While the H5 hemagglutinin (HA) genes of the G1 cluster were isolated throughout the winter season, those of the G2 cluster were also detected in late winter, suggesting that H5 HPAIVs possessing H5 HA genes from the two different clusters were individually introduced into Kagoshima prefecture. Intriguingly, genetic constellations revealed that the H5N8 HPAIVs could be classified into six genotypes, including four previously reported genotypes (E1, E2, E3, and E7), and two new genotypes (tentatively named E8 and E9). The PB1 and PA gene segments of genotypes E8 and E9 shared high similarity with those of LPAIVs, whereas the remaining gene segments were close to those of genotype E1. Furthermore, LPAIVs whose PA gene segment was close to that of genotype E9 were isolated from the environmental water. Overall, we revealed that various HPAIV genotypes circulated in Kagoshima prefecture during the 2020/21 winter season. This study highlights the importance of monitoring both HPAIV and LPAIV to better understand AIV ecology in migratory waterfowl populations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Animais , Japão , Estações do Ano , Vírus da Influenza A Subtipo H3N2 , Animais Selvagens , Influenza Aviária/epidemiologia , Vírus da Influenza A/genética , Genótipo , Filogenia
8.
J Virol ; 96(18): e0123322, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36098512

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) of the Goose/Guangdong (Gs/Gd) lineage are an emerging threat to wild birds. In the 2016-2017 H5N8 outbreak, unexplained variability was observed in susceptible species, with some reports of infected birds dying in high numbers and other reports of apparently subclinical infections. This experimental study was devised to test the hypothesis that previous infection with a less-virulent HPAIV (i.e., 2014 H5N8) provides long-term immunity against subsequent infection with a more-virulent HPAIV (i.e., 2016 H5N8). Therefore, two species of wild ducks-the more-susceptible tufted duck (Aythya fuligula) and the more-resistant mallard (Anas platyrhynchos)-were serially inoculated, first with 2014 H5N8 and after 9 months with 2016 H5N8. For both species, a control group of birds was first sham inoculated and after 9 months inoculated with 2016 H5N8. Subsequent infection with the more-virulent 2016 H5N8 caused no clinical signs in tufted ducks that had previously been infected with 2014 H5N8 (n = 6) but caused one death in tufted ducks that had been sham inoculated (n = 7). In mallards, 2016 H5N8 infection caused significant body weight loss in previously sham-inoculated birds (n = 8) but not in previously infected birds (n = 7). IMPORTANCE This study showed that ducks infected with a less-virulent HPAIV developed immunity that was protective against a subsequent infection with a more-virulent HPAIV 9 months later. Following 2014 H5N8 infection, the proportion of birds with detectable influenza nucleoprotein antibody declined from 100% (8/8) in tufted ducks and 78% (7/9) in mallards after 1 month to 33% (2/6) in tufted ducks and 29% (2/7) in mallards after 9 months. This finding helps predict the expected impact that an HPAIV outbreak may have on wild bird populations, depending on whether they are immunologically naive or have survived previous infection with HPAIV.


Assuntos
Animais Selvagens , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Patos , Vírus da Influenza A Subtipo H5N8/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Intervalo Serial de Infecção
9.
J Virol ; 96(13): e0014922, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35670594

RESUMO

Waterfowl is the natural reservoir for avian influenza viruses (AIV), where the infection is mostly asymptomatic. In 2016, the panzootic high pathogenicity (HP) AIV H5N8 of clade 2.3.4.4B (designated H5N8-B) caused significant mortality in wild and domestic ducks, in stark contrast to the predecessor 2.3.4.4A virus from 2014 (designated H5N8-A). Here, we studied the genetic determinants for virulence and transmission of H5N8 clade 2.3.4.4 in Pekin ducks. While ducks inoculated with recombinant H5N8-A did not develop any clinical signs, H5N8-B-inoculated and cohoused ducks died after showing neurological signs. Swapping of the HA gene segments did not increase virulence of H5N8-A but abolished virulence and reduced systemic replication of H5N8-B. Only H5N8-A carrying H5N8-B HA, NP, and NS with or without NA exhibited high virulence in inoculated and contact ducks, similar to H5N8-B. Compared to H5N8-A, HA, NA, NS, and NP proteins of H5N8-B possess peculiar differences, which conferred increased receptor binding affinity, neuraminidase activity, efficiency to inhibit interferon-alpha induction, and replication in vitro, respectively. Taken together, this comprehensive study showed that HA is not the only virulence determinant of the panzootic H5N8-B in Pekin ducks, but NP, NS, and to a lesser extent NA were also necessary for the exhibition of high virulence in vivo. These proteins acted synergistically to increase receptor binding affinity, sialidase activity, interferon antagonism, and replication. This is the first ad-hoc study to investigate the mechanism underlying the high virulence of HPAIV in Pekin ducks. IMPORTANCE Since 2014, several waves of avian influenza virus (AIV) H5N8 of clade 2.3.4.4 occurred globally on unprecedented levels. Unlike viruses in the first wave in 2014-2015 (H5N8-A), viruses in 2015-2016 (H5N8-B) exhibited unusually high pathogenicity (HP) in wild and domestic ducks. Here, we found that the high virulence of H5N8-B in Pekin ducks could be attributed to multiple factors in combination, namely, hemagglutinin (HA), neuraminidase (NA), nucleoprotein (NP), and nonstructural protein 1 (NS1). Compared to H5N8-A, H5N8-B possesses distinct genetic and biological properties including increased HA receptor-binding affinity and neuraminidase activity. Likewise, H5N8-B NS1 and NP were more efficient to inhibit interferon induction and enhance replication in primary duck cells, respectively. These results indicate the polygenic trait of virulence of HPAIV in domestic ducks and the altered biological properties of the HPAIV H5N8 clade 2.3.4.4B. These findings may explain the unusual high mortality in Pekin ducks during the panzootic H5N8 outbreaks.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Doenças das Aves Domésticas , Proteínas Virais , Virulência , Animais , Patos , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/transmissão , Interferons , Neuraminidase/genética , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência/genética
10.
J Virol ; 96(1): e0136621, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34613804

RESUMO

Highly pathogenic avian influenza viruses (HPAIV) emerge from low-pathogenic avian influenza viruses (LPAIV) through the introduction of basic amino acids at the hemagglutinin (HA) cleavage site. Following viral evolution, the newly formed HPAIV likely represents a minority variant within the index host, predominantly infected with the LPAIV precursor. Using reverse genetics-engineered H5N8 viruses differing solely at the HA cleavage, we tested the hypothesis that the interaction between the minority HPAIV and the majority LPAIV could modulate the risk of HPAIV emergence and that the nature of the interaction could depend on the host species. In chickens, we observed that the H5N8LP increased H5N8HP replication and pathogenesis. In contrast, the H5N8LP antagonized H5N8HP replication and pathogenesis in ducks. Ducks mounted a more potent antiviral innate immune response than chickens against the H5N8LP, which correlated with H5N8HP inhibition. These data provide experimental evidence that HPAIV may be more likely to emerge in chickens than in ducks and underscore the importance of within-host viral variant interactions in viral evolution. IMPORTANCE Highly pathogenic avian influenza viruses represent a threat to poultry production systems and to human health because of their impact on food security and because of their zoonotic potential. It is therefore crucial to better understand how these viruses emerge. Using a within-host competition model between high- and low-pathogenic avian influenza viruses, we provide evidence that highly pathogenic avian influenza viruses could be more likely to emerge in chickens than in ducks. These results have important implications for highly pathogenic avian influenza virus emergence prevention, and they underscore the importance of within-host viral variant interactions in virus evolution.


Assuntos
Galinhas , Suscetibilidade a Doenças , Patos , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H5N8/fisiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Biomarcadores , Biópsia , Células Cultivadas , Coinfecção , Genótipo , Imuno-Histoquímica , Influenza Aviária/metabolismo , Influenza Aviária/patologia , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia , RNA Viral , Especificidade da Espécie , Carga Viral , Virulência , Replicação Viral
11.
Appl Environ Microbiol ; 89(1): e0157222, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602303

RESUMO

H5N8, a highly pathogenic avian influenza, has become a new zoonotic threat in recent years. As of December 28, 2021, at least 3,206 H5N8 cases had been reported in wild birds and poultry worldwide. In January 2021, a novel virus strain named A/goose/China/1/2021 was isolated during an H5N8 goose influenza outbreak in northeastern China. The PB2, PB1, HA, and M genes of A/goose/China/1/2021 were highly identical to those of H5N8 strains emerging in Kazakhstan and Russia in Central Asia from August to September 2020, while the remaining four genes had the closest homology to those of H5N8 viruses isolated in South Korea in East Asia from November to December 2020. We thus speculate that A/goose/China/1/2021 is likely a reassortant virus that formed in the 2020 to 2021 influenza season and that the migratory birds via the two migration routes of Central Asia and East Asia-Australia may have played an essential role in the genetic reassortment of this virus. The phylogenetic analysis indicated that the HA genes of H5N8 viruses belonging to group II of subclade 2.3.4.4b, including A/goose/China/1/2021, may be derived from strains in Central Asia. Given the complex global spread of H5N8 virus, our study highlights the necessity to strengthen the function of the global surveillance network for H5N8 virus and to accelerate the pace of vaccine development to confront the current challenges posed by H5N8 virus of subclade 2.3.4.4. IMPORTANCE H5N8, a highly pathogenic avian influenza, not only has an impact on public health, but also has a huge negative impact on animal health, food safety, safety, and even on the local and international economy. The migratory wild birds play a vital role in the intercontinental transmission of H5N8 virus. It is urgent that we should strengthen the function of the global surveillance network for H5N8 virus and accelerate the pace of vaccine development to confront the current challenges posed by H5N8 virus of subclade 2.3.4.4.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , China/epidemiologia , Gansos , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/epidemiologia , Filogenia
12.
Microb Pathog ; 174: 105928, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36470346

RESUMO

Multiple incursions of different subtypes of highly pathogenic avian influenza (HPAI) A/H5NX viruses have caused widely considerable outbreaks in poultry and hundreds of human infections. Extensive reassortment events associated with currently circulating clade 2.3.4.4b of A/H5NX viruses have been widely recorded. Wild migratory birds contribute to the spillover of diverse viruses throughout their migration flyways. During our active surveillance of avian influenza in Egypt, we successfully isolated and fully characterized HPAI A/H5N5 virus of clade 2.3.4.4b that was detected in a healthy purple heron. The Egyptian H5N5 virus is genotypically similar with the same subtype that was detected in the far east of Russia and several European countries. The antigenic analysis showed that the Egyptian H5N5 virus is distinct from HPAI A(H5N8) viruses in Egypt. The virus preferentially binds to avian-like receptors rather than human-like receptors. Our results showed that the virus caused 100% and 60% lethality in chicken and mice respectively. Increasing active surveillance efforts, monitoring the dynamics of emerging AIVs, and risk assessment implementation should be globally applied especially in hot spot regions like Egypt.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Humanos , Animais , Camundongos , Influenza Aviária/epidemiologia , Egito/epidemiologia , Filogenia , Animais Selvagens , Vírus da Influenza A Subtipo H5N8/genética , Galinhas
13.
Microb Pathog ; 176: 106001, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682670

RESUMO

The zoonotic pathogen avian influenza A H5N8 causes enormous economic losses in the poultry industry and poses a serious threat to the public health. Here, we report the first systematic review and meta-analysis of the worldwide prevalence of birds. We filtered 45 eligible articles from seven databases. A random-effects model was used to analyze the prevalence of H5N8 in birds. The pooled prevalence of H5N8 in birds was 1.6%. In the regions, Africa has the highest prevalence (8.0%). Based on the source, village (8.3%) was the highest. In the sample type, the highest prevalence was organs (79.7%). In seasons, the highest prevalence was autumn (28.1%). The largest prevalence in the sampling time was during 2019 or later (7.0%). Furthermore, geographical factors also were associated with the prevalence. Therefore, we recommend site-specific prevention and control tools for this strain in birds and enhance the surveillance to reduce the spread of H5N8.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Influenza Humana , Animais , Humanos , Influenza Aviária/epidemiologia , Animais Selvagens , Prevalência , Aves , Influenza Humana/epidemiologia , Filogenia , Surtos de Doenças/veterinária
14.
Vet Res ; 54(1): 56, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430292

RESUMO

We analysed the interplay between palmiped farm density and the vulnerability of the poultry production system to highly pathogenic avian influenza (HPAI) H5N8. To do so, we used a spatially-explicit transmission model, which was calibrated to reproduce the observed spatio-temporal distribution of outbreaks in France during the 2016-2017 epidemic of HPAI. Six scenarios were investigated, in which the density of palmiped farms was decreased in the municipalities with the highest palmiped farm density. For each of the six scenarios, we first calculated the spatial distribution of the basic reproduction number (R0), i.e. the expected number of farms a particular farm would be likely to infect, should all other farms be susceptible. We also ran in silico simulations of the adjusted model for each scenario to estimate epidemic sizes and time-varying effective reproduction numbers. We showed that reducing palmiped farm density in the densest municipalities decreased substantially the size of the areas with high R0 values (> 1.5). In silico simulations suggested that reducing palmiped farm density, even slightly, in the densest municipalities was expected to decrease substantially the number of affected poultry farms and therefore provide benefits to the poultry sector as a whole. However, they also suggest that it would not have been sufficient, even in combination with the intervention measures implemented during the 2016-2017 epidemic, to completely prevent the virus from spreading. Therefore, the effectiveness of alternative structural preventive approaches now needs to be assessed, including flock size reduction and targeted vaccination.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Influenza Aviária/prevenção & controle , Fazendas , Aves Domésticas , França/epidemiologia
15.
Avian Pathol ; 52(3): 176-184, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37079321

RESUMO

Highly pathogenic avian influenza (HPAI) viruses from the Goose/Guangdong/96-lineage emerged in Southeast Asia and subsequently spread to the Middle East, Africa and Europe, infecting a range of birds and mammals (including humans). This lineage of H5 viruses can efficiently establish itself in wild birds after circulating among gallinaceous poultry, facilitating reassortment with low pathogenic avian influenza (LPAI) virus strains, enhancing dispersal over long distances and contributing to endemicity. The detection of HPAI H5N8 virus (clade 2.3.4.4B) in 2017 in the Mpumalanga Province of South Africa marked the beginning of an epidemic that devastated the South African poultry industry. Vaccines were tested to assess protection against the circulating field strain. This article describes the performance of a reverse genetics inactivated H5N1 vaccine from Zoetis (RG-H5N1), with 96.1% identity to the circulating HPAI H5N8 virus. Two locally formulated benchmarks, one containing an H5N8 antigen homologous to the field strain (Benchmark-H5N8), the other containing a heterologous (87.6% identity to field virus) LPAI H5N1 antigen (Benchmark-H5N1), were included for comparison. Efficacy was assessed in specific pathogen-free (SPF) chickens using a prime-boost approach (injections at days 21 and 45), followed by a challenge with a South African HPAI H5N8 isolate (70 days of age). The Zoetis RG-H5N1 vaccine and Benchmark-H5N8 outperformed the Benchmark-H5N1 in terms of humoral response against the H5N8 antigen and reduction of shedding. The Zoetis RG-H5N1 vaccine protected 100% of the chickens against clinical disease and death. This study confirmed that antigenically matched inactivated vaccines could induce robust protection and markedly reduce viral shedding.RESEARCH HIGHLIGHTSConditionally licensed vaccine protected against HPAI H5N8 (clade 2.3.4.4B).Complete protection against clinical disease and mortality.Drastic reduction of viral shedding after challenge.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Humanos , Animais , Galinhas , Aves Domésticas , Mamíferos
16.
Indian J Med Res ; 158(2): 113-118, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37675691

RESUMO

Background & objectives: The highly pathogenic avian influenza (HPAI) H5N1 and H5N8 viruses have been one of the leading causes of avian diseases worldwide, resulting in severe economic losses and posing potential zoonotic risk. There are no reports on the correlation of the seasonality of H5N1 and H5N8 viruses with the migratory bird season in India, along with the species affected. The present report describes the distribution and seasonality of HPAI outbreaks in India from 2006 to 2021. Methods: The data on the occurrence and locations of outbreaks in India and affected bird species were collated from the Food and Agriculture Organization of the United Nations database and grouped by month and year. The distribution and seasonality of HPAI H5N1 and H5N8 viruses were analyzed. Results: A total of 284 H5N1 outbreaks were reported since 2006, with a surge in 2021. The initial outbreaks of H5N1 were predominantly in poultry. Since 2016, 57 outbreaks of H5N8 were also reported, predominantly in wild birds. Most of the outbreaks of HPAI were reported from post monsoon onwards till pre-summer season (i.e. between October and March) with their peak in winter, in January. Apart from poultry, the bird species such as owl, Indian peafowl, lesser adjutant, crows and wild migratory birds such as demoiselle crane, northern pintail and bar-headed goose were positive for HPAI. Interpretation & conclusions: Such studies on the seasonality of HPAI outbreaks would help in the development of prevention and control strategies. The recent human infections of H5N1 and H9N2 viruses highlight the need to strengthen surveillance in wild, resident, migratory birds and in poultry along with One Health studies in India.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Influenza Aviária/epidemiologia , Surtos de Doenças , Animais Selvagens , Aves , Aves Domésticas , Índia/epidemiologia
17.
Emerg Infect Dis ; 28(5): 1039-1042, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35447054

RESUMO

During October 2020, we identified 13 highly pathogenic avian influenza A(H5N8) clade 2.3.4.4b viruses from wild ducks in Ningxia, China. These viruses were genetically related to H5N8 viruses circulating mainly in poultry in Europe during early 2020. We also determined movements of H5N8 virus‒infected wild ducks and evidence for spreading of viruses.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Influenza Humana , Doenças das Aves Domésticas , Animais , Animais Selvagens , Aves , Patos , Humanos , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/epidemiologia , Filogenia
18.
Emerg Infect Dis ; 28(7): 1446-1450, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35642480

RESUMO

Avian influenza A(H5N8) virus has caused major epizootics in Europe since 2016. We conducted virologic analysis of aerosol and dust collected on poultry farms in France during 2020-2021. Our results suggest dust contributes to viral dispersal, even early in an outbreak, and could be a valuable surveillance tool.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Influenza Humana , Doenças das Aves Domésticas , Animais , Animais Selvagens , Aves , Surtos de Doenças/veterinária , Poeira , Fazendas , França/epidemiologia , Humanos , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia
19.
Emerg Infect Dis ; 28(7): 1451-1455, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609620

RESUMO

Genetic analyses of highly pathogenic avian influenza H5 subtype viruses isolated from the Izumi Plain, Japan, revealed cocirculation of 2 genetic groups of clade 2.3.4.4b viruses among migratory waterfowl. Our findings demonstrate that both continuous surveillance and timely information sharing of avian influenza viruses are valuable for rapid risk assessment.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Doenças das Aves Domésticas , Animais , Animais Selvagens , Aves , Humanos , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Japão/epidemiologia , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia
20.
J Virol ; 95(18): e0095521, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232725

RESUMO

Highly pathogenic avian influenza (HPAI) viruses from the H5Nx Goose/Guangdong/96 lineage continue to cause outbreaks in domestic and wild bird populations. Two distinct genetic groups of H5N8 HPAI viruses, hemagglutinin (HA) clades 2.3.4.4A and 2.3.4.4B, caused intercontinental outbreaks in 2014 to 2015 and 2016 to 2017, respectively. Experimental infections using viruses from these outbreaks demonstrated a marked difference in virulence in mallards, with the H5N8 virus from 2014 causing mild clinical disease and the 2016 H5N8 virus causing high mortality. To assess which gene segments are associated with enhanced virulence of H5N8 HPAI viruses in mallards, we generated reassortant viruses with 2014 and 2016 viruses. For single-segment reassortants in the genetic backbone of the 2016 virus, pathogenesis experiments in mallards revealed that morbidity and mortality were reduced for all eight single-segment reassortants compared to the parental 2016 virus, with significant reductions in mortality observed with the polymerase basic protein 2 (PB2), nucleoprotein (NP), and matrix (M) reassortants. No differences in morbidity and mortality were observed with reassortants that either have the polymerase complex segments or the HA and neuraminidase (NA) segments of the 2016 virus in the genetic backbone of the 2014 virus. In vitro assays showed that the NP and polymerase acidic (PA) segments of the 2014 virus lowered polymerase activity when combined with the polymerase complex segments of the 2016 virus. Furthermore, the M segment of the 2016 H5N8 virus was linked to filamentous virion morphology. Phylogenetic analyses demonstrated that gene segments related to the more virulent 2016 H5N8 virus have persisted in the contemporary H5Nx HPAI gene pool until 2020. IMPORTANCE Outbreaks of H5Nx HPAI viruses from the goose/Guangdong/96 lineage continue to occur in many countries and have resulted in substantial impact on wild birds and poultry. Epidemiological evidence has shown that wild waterfowl play a major role in the spread of these viruses. While HPAI virus infection in gallinaceous species causes high mortality, a wide range of disease outcomes has been observed in waterfowl species. In this study, we examined which gene segments contribute to severe disease in mallards infected with H5N8 HPAI viruses. No virus gene was solely responsible for attenuating the high virulence of a 2016 H5N8 virus, but the PB2, NP, and M segments significantly reduced mortality. The findings herein advance our knowledge on the pathobiology of avian influenza viruses in waterfowl and have potential implications on the ecology and epidemiology of H5Nx HPAI in wild bird populations.


Assuntos
Patos/virologia , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/transmissão , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Proteínas Virais/genética , Animais , Vírus da Influenza A Subtipo H5N8/genética , Filogenia , Doenças das Aves Domésticas/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA