Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.288
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 20(8): e1012459, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39186777

RESUMO

Live attenuated vaccines (LAVs) whose virulence would be controlled at the tissue level could be a crucial tool to effectively fight intracellular bacterial pathogens, because they would optimize the induction of protective immune memory while avoiding the long-term persistence of vaccine strains in the host. Rational development of these new LAVs implies developing an exhaustive map of the bacterial virulence genes according to the host organs implicated. We report here the use of transposon sequencing to compare the bacterial genes involved in the multiplication of Brucella melitensis, a major causative agent of brucellosis, in the lungs and spleens of C57BL/6 infected mice. We found 257 and 135 genes predicted to be essential for B. melitensis multiplication in the spleen and lung, respectively, with 87 genes common to both organs. We selected genes whose deletion is predicted to produce moderate or severe attenuation in the spleen, the main known reservoir of Brucella, and compared deletion mutants for these genes for their ability to protect mice against challenge with a virulent strain of B. melitensis. The protective efficacy of a deletion mutant for the plsC gene, implicated in phospholipid biosynthesis, is similar to that of the reference Rev.1 vaccine but with a shorter persistence in the spleen. Our results demonstrate that B. melitensis faces different selective pressures depending on the organ and underscore the effectiveness of functional genome mapping for the design of new safer LAV candidates.


Assuntos
Vacina contra Brucelose , Brucella melitensis , Brucelose , Camundongos Endogâmicos C57BL , Baço , Animais , Brucella melitensis/imunologia , Brucella melitensis/genética , Brucella melitensis/patogenicidade , Brucelose/prevenção & controle , Brucelose/imunologia , Brucelose/microbiologia , Camundongos , Baço/microbiologia , Baço/imunologia , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/genética , Vacinas Atenuadas/imunologia , Virulência , Feminino , Genoma Bacteriano , Pulmão/microbiologia , Pulmão/imunologia
2.
J Immunol ; 210(10): 1576-1588, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036290

RESUMO

The Brucella abortus double-mutant (ΔznuA ΔnorD Brucella abortus-lacZ [znBAZ]) was assessed for its protective efficacy after vaccination with a single nasal dose. Superior protection was achieved in znBAZ-vaccinated mice against pulmonary, wild-type B. abortus 2308 challenge when compared with conventional livestock Brucella abortus vaccines, the smooth S19 (smooth B. abortus strain 19 vaccine) and rough RB51 (rough mutant vaccine strain of B. abortus) strains. Nasal znBAZ vaccination reduced splenic and lung colonization by wild-type brucellae by >3-4 logs. In contrast, S19 reduced lung colonization by only 32-fold, and RB51 failed to reduce colonization. One profound attribute of znBAZ vaccination was the >3-fold increase in pulmonary CD8+ T cells when compared with other vaccinated groups. S19 vaccination increased only CD4+ T cells. All vaccines induced IFN-γ and TNF-α production by CD4+ T cells, but only znBAZ vaccination enhanced the recruitment of polyfunctional CD8+ T cells, by >100-fold. IL-17 by both CD4+ and CD8+ T cells was also induced by subsequent znBAZ vaccination. These results demonstrate that, in addition to achieving protective immunity by CD4+ T cells, CD8+ T cells, specifically resident memory T cells, also confer protection against brucellosis. The protection obtained by znBAZ vaccination was attributed to IFN-γ-producing CD8+ T cells, because depletion of CD8+ T cells throughout vaccination and challenge phases abrogated protection. The stimulation of only CD4+ T cells by RB51- and S19-vaccinated mice proved insufficient in protecting against pulmonary B. abortus 2308 challenge. Thus, nasal znBAZ vaccination offers an alternative means to elicit protection against brucellosis.


Assuntos
Vacina contra Brucelose , Brucelose , Pneumonia , Animais , Camundongos , Brucella abortus , Vacinação , Camundongos Endogâmicos BALB C
3.
J Mol Evol ; 92(3): 338-357, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38809331

RESUMO

Brucellosis is a notifiable disease induced by a facultative intracellular Brucella pathogen. In this study, eight Brucella abortus and eighteen Brucella melitensis strains from Egypt were annotated and compared with RB51 and REV1 vaccines respectively. RAST toolkit in the BV-BRC server was used for annotation, revealing genome length of 3,250,377 bp and 3,285,803 bp, 3289 and 3323 CDS, 48 and 49 tRNA genes, the same number of rRNA (3) genes, 583 and 586 hypothetical proteins, 2697 and 2726 functional proteins for B. abortus and B. melitensis respectively. B. abortus strains exhibit a similar number of candidate genes, while B. melitensis strains showed some differences, especially in the SRR19520422 Faiyum strain. Also, B. melitensis clarified differences in antimicrobial resistance genes (KatG, FabL, MtrA, MtrB, OxyR, and VanO-type) in SRR19520319 Faiyum and (Erm C and Tet K) in SRR19520422 Faiyum strain. Additionally, the whole genome phylogeny analysis proved that all B. abortus strains were related to vaccinated animals and all B. melitensis strains of Menoufia clustered together and closely related to Gharbia, Dameitta, and Kafr Elshiek. The Bowtie2 tool identified 338 (eight B. abortus) and 4271 (eighteen B. melitensis) single nucleotide polymorphisms (SNPs) along the genomes. These variants had been annotated according to type and impact. Moreover, thirty candidate genes were predicted and submitted at GenBank (24 in B. abortus) and (6 in B. melitensis). This study contributes significant insights into genetic variation, virulence factors, and vaccine-related associations of Brucella pathogens, enhancing our knowledge of brucellosis epidemiology and evolution in Egypt.


Assuntos
Brucella abortus , Brucella melitensis , Genoma Bacteriano , Genômica , Filogenia , Brucella melitensis/genética , Brucella abortus/genética , Egito , Genômica/métodos , Animais , Brucelose/microbiologia , Vacina contra Brucelose/genética , Vacinas Bacterianas
4.
Microb Pathog ; 195: 106909, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218373

RESUMO

Brucellosis is a zoonotic disease caused by Brucella, which is difficult to eliminate by conventional drugs. Therefore, a novel multi-epitope vaccine (MEV) was designed to prevent human Brucella infection. Based on the method of "reverse vaccinology", cytotoxic T lymphocyte epitopes (CTLEs), helper T lymphocyte epitopes (HTLEs), linear B-cell epitopes (LBEs) and conformational B-cell epitopes (CBEs) of four Brucella proteins (VirB9, VirB10, Omp 19 and Omp 25) were obtained. In order to keep the correct protein folding, the multiple epitopes was constructed by connecting epitopes through linkers. In view of the significant connection between human leukocyte antigen CTLA-4 and B7 molecules found on antigen presenting cells (APCs), a new vaccine (V_C4MEV) for preventing brucellosis was created by combining CTLA-4 immunoglobulin variable region (IgV_CTLA-4) with MEV protein. Immunoinformatics analysis showed that V_C4MEV has a good secondary and tertiary structure. Additionally, molecular docking and molecular dynamics simulation (MD) revealed a robust binding affinity between IgV_ CTLA-4 and the B7 molecule. Notably, the vaccine V_C4MEV was demonstrated favorable immunogenicity and antigenicity in both in vitro and in vivo experiments. V_C4MEV had the potential to activate defensive cells and immune responses, offering a hopeful approach for developing vaccines against Brucella in the upcoming years.


Assuntos
Vacina contra Brucelose , Brucella , Brucelose , Antígeno CTLA-4 , Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Brucelose/prevenção & controle , Brucelose/imunologia , Epitopos de Linfócito B/imunologia , Antígeno CTLA-4/imunologia , Epitopos de Linfócito T/imunologia , Vacina contra Brucelose/imunologia , Animais , Humanos , Brucella/imunologia , Brucella/genética , Camundongos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Imunoinformática , Lipoproteínas
5.
Nanotechnology ; 35(39)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38917779

RESUMO

Safe and effective vaccine candidates are needed to address the limitations of existing vaccines against Brucellosis, a disease responsible for substantial economic losses in livestock. The present study aimed to encapsulate recombinant Omp25 and EipB proteins, knowledged antigen properties, into PLGA nanoparticles, characterize synthesized nanoparticles with different methods, and assessed theirin vitro/in vivoimmunostimulatory activities to develop new vaccine candidates. The recombinant Omp25 and EipB proteins produced with recombinant DNA technology were encapsulated into PLGA nanoparticles by double emulsion solvent evaporation technique. The nanoparticles were characterized using FE-SEM, Zeta-sizer, and FT-IR instruments to determine size, morphology, zeta potentials, and polydispersity index values, as well as to analyze functional groups chemically. Additionally, the release profiles and encapsulation efficiencies were assessed using UV-Vis spectroscopy. After loading with recombinant proteins, O-NPs reached sizes of 221.2 ± 5.21 nm, while E-NPs reached sizes of 274.4 ± 9.51 nm. The cumulative release rates of the antigens, monitored until the end of day 14, were determined to be 90.39% for O-NPs and 56.1% for E-NPs. Following the assessment of thein vitrocytotoxicity and immunostimulatory effects of both proteins and nanoparticles on the J774 murine macrophage cells,in vivoimmunization experiments were conducted using concentrations of 16µg ml-1for each protein. Both free antigens and antigen-containing nanoparticles excessively induced humoral immunity by increasing producedBrucella-specific IgG antibody levels for 3 times in contrast to control. Furthermore, it was also demonstrated that vaccine candidates stimulated Th1-mediated cellular immunity as well since they significantly raised IFN-gamma and IL-12 cytokine levels in murine splenocytes rather than IL-4 following to immunization. Additionally, the vaccine candidates conferred higher than 90% protection from the infection according to challenge results. Our findings reveal that PLGA nanoparticles constructed with the encapsulation of recombinant Omp25 or EipB proteins possess great potential to triggerBrucella-specific humoral and cellular immune response.


Assuntos
Brucelose , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteínas Recombinantes , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Brucelose/prevenção & controle , Brucelose/imunologia , Camundongos , Nanopartículas/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/química , Camundongos Endogâmicos BALB C , Feminino , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/genética , Vacina contra Brucelose/administração & dosagem , Brucella abortus/imunologia , Brucella abortus/genética , Portadores de Fármacos/química , Nanovacinas
6.
Curr Microbiol ; 81(10): 333, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212759

RESUMO

The Pantanal region, the largest floodplain in the world, has a huge biodiversity and is an important livestock center. Bovine brucellosis has been reported in the region over the last three decades, posing implications for cattle industry as well as for the maintenance of biodiversity. We aimed to investigate the presence of B. abortus S19 vaccine strain DNA in unvaccinated domestic and wild ungulates from the Brazilian Pantanal. Fifty-two heifers, 63 ovine, 24 domestic pigs, 28 feral pigs, and three Pampas deer were sampled. Brucella spp. was detected through bcsp31 PCR of blood samples in 45.3% (77/170) of the sampled animals, of which 36.4% (28/77) showed positivity in ery PCR corresponding to B. abortus S19 strain. Feral pigs presented the highest occurrence of positive samples in bcsp31 PCR (75%), followed by ovine (47.6%), domestic pigs (41.7%), and unvaccinated heifers (30.8%). We did not observe positivity in Pampas deer. Our results strongly suggest that vaccination against bovine brucellosis may promote spill-over of B. abortus S19 strain in the Pantanal region. Moreover, our data indicate that wild strains of Brucella circulates in the Pantanal Biome.


Assuntos
Animais Selvagens , Brucelose , DNA Bacteriano , Cervos , Animais , Brasil , Brucelose/veterinária , Brucelose/microbiologia , Cervos/microbiologia , Ovinos , Animais Selvagens/microbiologia , DNA Bacteriano/genética , Bovinos , Suínos , Brucella abortus/genética , Brucella abortus/classificação , Brucella abortus/imunologia , Brucella abortus/isolamento & purificação , Vacina contra Brucelose/genética , Vacina contra Brucelose/imunologia , Animais Domésticos/microbiologia
7.
Curr Microbiol ; 81(11): 383, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39343859

RESUMO

Brucella is a facultative intracellular gram-negative coccobacillus. It is nonsporulating and reproduced in macrophage phagosomes. The use of nanostructures as drug and vaccine carriers has recently received attention due to their ability to control the release profile and protect the drug molecules. This study presents a suitable nano-polyethyleneimine formulation to be used as an immunoadjuvant and LPS along with trivalent candidate antigens of TF, BP26, and omp31 to selectively stimulate the immune response. After designing and evaluating the immunogenic structure by databases and bioinformatics software, recombinant protein cloning and gene expression were performed in Escherichia coli BL21 bacteria. This protein was extracted from the cultured cells, purified by Ni-NTA column. After placing the antigen inside the polyethyleneimine nanostructure, various properties of the nanoparticles, including their size, zeta potential, and retention rate for injection and inhalation of mice, diffusion efficacy, and antigen binding evaluation were evaluated. Mice were treated with different groups of antigens and nanoparticles on days 0, 10, 24, and 38. Two weeks after the last injection, the level of cytokines were investigated in spleen cells, including IFN-γ, IL-4, and IL-12. The serum concentration of IgG2a and IgG1 antibodies were also assessed. The response was consistent with significant production of IgG1, IgG2a, IFN-γ21, IL-12, and IL-4 compared to the controls (P < 0.05). Compared to the positive and negative control groups, recombinant protein and nanoparticles showed a good response in subsequent injections with live bacterial strains. The present study also revealed the potential of the developed recombinant protein as a candidate in the design and manufacture of subunit vaccines against Brucella species. This protein stimulates cellular and humoral immune responses compared to the positive control groups. These findings can be useful in the prevention and control of brucellosis and pave the way for further research by researchers around the world.


Assuntos
Anticorpos Antibacterianos , Antígenos de Bactérias , Brucella , Brucelose , Lipopolissacarídeos , Polietilenoimina , Animais , Camundongos , Brucelose/prevenção & controle , Brucelose/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Brucella/imunologia , Brucella/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Lipopolissacarídeos/imunologia , Polietilenoimina/química , Feminino , Camundongos Endogâmicos BALB C , Adjuvantes Imunológicos/administração & dosagem , Citocinas/metabolismo , Nanoestruturas/química , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/administração & dosagem , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Imunoglobulina G/sangue , Modelos Animais de Doenças , Nanopartículas/química , Baço/imunologia , Proteínas de Membrana
8.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 879-891, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38419498

RESUMO

Brucellosis is a global zoonotic infection caused by Brucella bacteria, which poses a significant burden on society. While transmission prevention is currently the most effective method, the absence of a licenced vaccine for humans necessitates the urgent development of a safe and effective vaccine. Recombinant protein-based subunit vaccines are considered promising options, and in this study, the Brucella BP26 protein is expressed using prokaryotic expression systems. The immune responses are evaluated using the well-established adjuvant CpG-ODN. The results demonstrate that rBP26 supplemented with a CpG adjuvant induces M1 macrophage polarization and stimulates cellular immune responses mediated by Th1 cells and CD8 + T cells. Additionally, it generates high levels of rBP26-specific antibodies in immunized mice. Furthermore, rBP26 immunization activates, proliferates, and produces cytokines in T lymphocytes while also maintaining immune memory for an extended period of time. These findings shed light on the potential biological function of rBP26, which is crucial for understanding brucellosis pathogenesis. Moreover, rBP26 holds promise as an effective subunit vaccine candidate for use in endemic areas.


Assuntos
Ativação de Macrófagos , Camundongos Endogâmicos BALB C , Células Th1 , Vacinas de Subunidades Antigênicas , Animais , Células Th1/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Camundongos , Ativação de Macrófagos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Feminino , Brucelose/prevenção & controle , Brucelose/imunologia , Vacina contra Brucelose/imunologia , Brucella/imunologia , Macrófagos/imunologia , Linfócitos T CD8-Positivos/imunologia , Adjuvantes Imunológicos/farmacologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Oligodesoxirribonucleotídeos/imunologia , Citocinas/metabolismo , Citocinas/imunologia , Proteínas de Membrana
9.
Rev Argent Microbiol ; 56(3): 270-275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38453565

RESUMO

The present study evaluates the effects of vaccination with Brucella melitensis strains Rev 1 ΔeryCD and Rev 1 on the reproductive system of male goats. Three groups, each of them consisting of 15 six-month-old brucellosis-free male goats, were studied. The first group was vaccinated with the Rev 1 ΔeryCD strain, the second group received Rev 1 and the third group was inoculated with sterile physiological saline solution. The dose of both strains was of 1×109CFU/ml. Over the course of the five months of this study, three males from each group were euthanized every month. Their reproductive tracts, spleens, and lymph nodes were collected to analyze serology, bacteriology PCR, histology, and immunohistochemistry. Results show that vaccination with B. melitensis strains Rev 1 ΔeryCD and Rev 1 does not harm the reproductive system of male goats. Strain B. melitensis Rev 1 ΔeryCD displayed a lower capacity to colonize the reproductive tract than strain Rev 1, which was attributed to its limited catabolic action toward erythritol.


Assuntos
Vacina contra Brucelose , Brucella melitensis , Brucelose , Cabras , Animais , Masculino , Brucella melitensis/imunologia , Brucelose/prevenção & controle , Brucelose/veterinária , Brucelose/microbiologia , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/administração & dosagem , Vacinação , Genitália Masculina/microbiologia , Vacinas Bacterianas
10.
Microb Pathog ; 185: 106417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866552

RESUMO

The gram-negative intracellular bacterium Brucella abortus causes bovine brucellosis, a zoonotic disease that costs a lot of money. This work developed a vector vaccine against brucellosis utilizing recombinant L. lactis expressing Brucella outer membrane protein BAB1-0278. Gene sequences were obtained from GenBank. The proteins' immunogenicity was tested with Vaxijen. The target vector was converted into L. lactis after enzymatic digestion and PCR validated the BAB1-0278 gene cloning in the pNZ8148 vector. The target protein was extracted using a Ni-NTA column and confirmed using SDS-PAGE and western blot. After vaccination with the target vaccine, the expression of IgG subclasses was evaluated by the ELISA method. Cytokine production was also measured by the qPCR method in the small intestine and spleen. Lymphocyte proliferation and innate immune response (NLR, CRP, and PLR) were also assessed. Finally, after the challenge test, the spleen tissue was examined by H&E staining. BAB1-0278 was chosen because of its antigenicity score of 0.5614. A 237-bp gene fragment was discovered using enzymatic digestion and PCR. The presence of a 13 kDa protein band was confirmed by SDS-PAGE and western blot. In comparison to the PBS group, mice given the L. lactis-pNZ8148-BAB1-0278-Usp45 vaccine 14 days after priming had substantially greater levels of total IgG, IgG1, and IgG2a (P < 0.001). Also, the production of cytokines (IFN-γ, TNFα, IL-4, and IL-10) indicating cellular immunity increased compared to the control group (P < 0.001). The target group had a lower inflammatory response, morphological impairment, alveolar edema, and lymphocyte infiltration. An efficient probiotic-based oral brucellosis vaccination was created. These studies have proven that the recommended immunization gives the best protection, which supports its promotion.


Assuntos
Vacina contra Brucelose , Brucelose , Lactococcus lactis , Bovinos , Camundongos , Animais , Lactococcus lactis/genética , Camundongos Endogâmicos BALB C , Vacina contra Brucelose/genética , Brucelose/prevenção & controle , Vacinação/métodos , Imunização/métodos , Brucella abortus/genética , Proteínas Recombinantes/genética , Imunoglobulina G , Anticorpos Antibacterianos
11.
Arch Microbiol ; 205(4): 122, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939918

RESUMO

This work aimed to provide recombinant Lactococcus lactis as a potential live vector for the manufacture of recombinant Brucella abortus (rBLS-Usp45). The sequences of the genes were collected from the GenBank database. Using Vaxijen and ccSOL, the proteins' immunogenicity and solubility were evaluated. Mice were given oral vaccinations with recombinant L. lactis. Anti-BLS-specific IgG antibodies were measured by ELISA assay. Cytokine reactions were examined using real-time PCR and the ELISA technique. The BLS protein was chosen for immunogenicity based on the vaccinology screening findings since it had maximum solubility and antigenic values ​​of 99% and 0.75, respectively. The BLS gene, digested at 477 bp, was electrophoretically isolated to demonstrate that the recombinant plasmid was successfully produced. Protein-level antigen expression showed that the target group produced the 18 kDa-sized BLS protein, whereas the control group did not express any proteins. In the sera of mice given the L. lactis-pNZ8148-BLS-Usp45 vaccine 14 days after priming, there was a significant level of BLS-specific IgG1, IgG2a (P < 0.001) compared to the PBS control group. Vaccinated mice showed higher levels of IFN-γ, TNFα, IL-4, and IL-10 in samples obtained on days 14 and 28, after receiving the L. lactis-pNZ8148-BLS-Usp45 and IRBA vaccines (P < 0.001). The inflammatory reaction caused less severe spleen injuries, alveolar edema, lymphocyte infiltration, and morphological damage in the target group's spleen sections. Based on our findings, an oral or subunit-based vaccine against brucellosis might be developed using L. lactis-pNZ8148-BLS-Usp45 as a novel, promising, and safe alternative to the live attenuated vaccines now available.


Assuntos
Vacina contra Brucelose , Lactococcus lactis , Camundongos , Animais , Brucella abortus/genética , Lactococcus lactis/genética , Vacinação , Vacina contra Brucelose/genética , Camundongos Endogâmicos BALB C
12.
Vet Res ; 54(1): 20, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918910

RESUMO

Ovine brucellosis is a global zoonotic disease of sheep caused by Brucella melitensis, which inflicts a significant burden on human and animal health. Brucella suis strain S2 (B. suis S2) is a smooth live attenuated vaccine for the prevention of ovine brucellosis in China. However, no previous studies have assessed the immunogenicity of B. suis S2 vaccine after oral immunization in sheep. Here, we attempted to evaluate the ovine immune response over the course of B. suis S2 immunization and to identify in vivo predictors for vaccine development. Body temperature, serum Brucella antibodies, serum cytokines (IL-12p70 and interferon [IFN]-γ), and bacterial load in the mandibular lymph nodes (LN), superficial cervical LN, superficial inguinal LN, and spleen were investigated to determine the safety and efficacy of the vaccine. The abnormal body temperature of sheep occurred within 8 days post-infection (dpi). Brucella suis S2 persisted for a short time (< 21 dpi) in the mandibular LN. The highest level of IL-12p70 was observed at 9 dpi, whereas serum IFN-γ levels peaked at 12 dpi. Transcriptome analysis and quantitative reverse transcription PCR were performed to determine gene expression profiles in the mandibular LN of sheep. Antigen processing and presentation pathway was the dominant pathway related to the dataset. Our studies suggest that the immune response in ovine LN resembled type 1 immunity with the secretion of IL-12p70 and IFN-γ after B.suis S2 immunization and the vaccine may eliminate Brucella via stimulation of M1 macrophages through the course of Th cells.


Assuntos
Vacina contra Brucelose , Brucella melitensis , Brucella suis , Brucelose , Doenças dos Ovinos , Animais , Brucelose/prevenção & controle , Brucelose/veterinária , Linfonodos , Ativação de Macrófagos , Macrófagos , Ovinos , Doenças dos Ovinos/prevenção & controle , Vacinas Atenuadas
13.
BMC Vet Res ; 19(1): 211, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853407

RESUMO

Cattle brucellosis is a severe zoonosis of worldwide distribution caused by Brucella abortus and B. melitensis. In some countries with appropriate infrastructure, animal tagging and movement control, eradication was possible through efficient diagnosis and vaccination with B. abortus S19, usually combined with test-and-slaughter (T/S). Although S19 elicits anti-smooth lipopolysaccharide antibodies that may interfere in the differentiation of infected and vaccinated animals (DIVA), this issue is minimized using appropriate S19 vaccination protocols and irrelevant when high-prevalence makes mass vaccination necessary or when eradication requisites are not met. However, S19 has been broadly replaced by vaccine RB51 (a rifampin-resistant rough mutant) as it is widely accepted that is DIVA, safe and as protective as S19. These RB51 properties are critically reviewed here using the evidence accumulated in the last 35 years. Controlled experiments and field evidence shows that RB51 interferes in immunosorbent assays (iELISA, cELISA and others) and in complement fixation, issues accentuated by revaccinating animals previously immunized with RB51 or S19. Moreover, contacts with virulent brucellae elicit anti-smooth lipopolysaccharide antibodies in RB51 vaccinated animals. Thus, accepting that RB51 is truly DIVA results in extended diagnostic confusions and, when combined with T/S, unnecessary over-culling. Studies supporting the safety of RB51 are flawed and, on the contrary, there is solid evidence that RB51 is excreted in milk and abortifacient in pregnant animals, thus being released in abortions and vaginal fluids. These problems are accentuated by the RB51 virulence in humans, lack diagnostic serological tests detecting these infections and RB51 rifampicin resistance. In controlled experiments, protection by RB51 compares unfavorably with S19 and lasts less than four years with no evidence that RB51-revaccination bolsters immunity, and field studies reporting its usefulness are flawed. There is no evidence that RB51 protects cattle against B. melitensis, infection common when raised together with small ruminants. Finally, data acumulated during cattle brucellosis eradication in Spain shows that S19-T/S is far more efficacious than RB51-T/S, which does not differ from T/S alone. We conclude that the assumption that RB51 is DIVA, safe, and efficaceous results from the uncritical repetition of imperfectly examined evidence, and advise against its use.


Assuntos
Vacina contra Brucelose , Brucelose , Doenças dos Bovinos , Gravidez , Feminino , Humanos , Bovinos , Animais , Brucella abortus , Brucelose/veterinária , Lipopolissacarídeos , Aborto Animal , Vacinação/veterinária , Anticorpos Antibacterianos
14.
PLoS Pathog ; 16(1): e1008176, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31951645

RESUMO

Brucellosis remains the most common zoonotic disease globally. Currently no vaccines for humans exist, and conventional brucellosis vaccines for livestock fail to confer complete protection; hence, an improved vaccine is needed. Although Brucella infections primarily occur following a mucosal exposure, vaccines are administered parenterally. Few studies have considered mucosal vaccinations, or even targeting of tissue-resident memory T (TRM) cells. TRM cells protect against viral infections, but less is known of their role in bacterial infections, and even less for brucellosis. Oral prime, nasal boost with a newly developed Brucella abortus double mutant (znBAZ) confers nearly complete protection against pulmonary challenge with wild-type (wt) B. abortus 2308, and its protective efficacy is >2800-fold better than the RB51 vaccine. Vaccination with znBAZ potently stimulated CD8+ T cells, whereas mucosal vaccination with RB51 induced mostly CD4+ T cells. Subsequent analysis revealed these pulmonary CD44+ CD69+ CD8+ T cells to be either CD103+ or CD103- TRM cells, and these sequestered to the lung parenchyma as CXCR3lo and to the airways as CXCR3hi. Both CD8+ TRM subsets contained single-positive IFN-γ and TNF-α, as well as, polyfunctional cells. IL-17-producing CD8+ TRM cells were also induced by znBAZ vaccination, but in vivo IL-17 neutralization had no impact upon protection. In vivo depletion of CD4+ T cells had no impact upon protection in znBAZ-vaccinated mice. In contrast, CD4+ T cell depletion reduced RB51's protective efficacy in spleens and lungs by two- and three-logs, respectively. Although anti-CD8 mAb-treated znBAZ-vaccinated mice showed a significantly reduced pulmonary efficacy, this treatment failed to completely deplete the lung CD8+ T cells, leaving the CD103+ and CD103- CD8+ TRM cell ratios intact. Only znBAZ-vaccinated CD8-/- mice were fully sensitive to pulmonary challenge with virulent wt B. abortus 2308 since CD8+ TRM cells could not be induced. Collectively, these data demonstrate the key role of mucosal vaccination for the generation of CD8+ TRM cells in protecting against pulmonary challenge with virulent B. abortus.


Assuntos
Vacina contra Brucelose/imunologia , Brucella abortus/imunologia , Brucelose/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Pneumopatias/microbiologia , Administração através da Mucosa , Animais , Vacina contra Brucelose/administração & dosagem , Brucella abortus/genética , Brucelose/prevenção & controle , Feminino , Imunogenicidade da Vacina , Pneumopatias/imunologia , Pneumopatias/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
15.
Microb Pathog ; 162: 105363, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34919994

RESUMO

Vaccination can prevent and control animal brucellosis. Currently, live attenuated vaccines are extensively used to prevent Brucella infection. However, traditional vaccines such as live attenuated vaccines are associated with biological safety risks for both humans and animals. The bacterial ghost (BG) is a new form of vaccine with great prospects. However, bacterial cells cannot be completely inactivated by biological lysis, conferring a safety risk associated with the vaccine. In this study, we developed a Brucella abortus A19 bacterial ghost (A19BG) through a double inactivation strategy with sequential biological lysis and hydrogen peroxide treatment. This strategy resulted in 100% inactivation of Brucella, such that viable bacterial cells were not detected even at an ultrahigh concentration of 1010 colony-forming units/mL. Furthermore, A19BG had a typical BG morphology and good genetic stability. Moreover, it did not induce adverse reactions in guinea pigs. The levels of antibodies, interferon-γ, interleukin-4, and CD4+ T cells in guinea pigs inoculated with the A19BG vaccine were similar to those inoculated with the existing A19 vaccine. Immunization with A19BG conferred a similar level of protection with that of A19 against Brucella melitensis M28 in both guinea pigs and cattle. In conclusion, the combination of biological lysis and H2O2-mediated inactivation is a safe and effective strategy that can serve as a reference for the preparation of BG vaccines.


Assuntos
Vacina contra Brucelose , Brucella melitensis , Brucelose , Animais , Anticorpos Antibacterianos , Brucella abortus , Brucelose/prevenção & controle , Bovinos , Cobaias , Peróxido de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
16.
Vet Res ; 53(1): 16, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236406

RESUMO

Brucella melitensis and Brucella ovis are gram-negative pathogens of sheep that cause severe economic losses and, although B. ovis is non-zoonotic, B. melitensis is the main cause of human brucellosis. B. melitensis carries a smooth (S) lipopolysaccharide (LPS) with an N-formyl-perosamine O-polysaccharide (O-PS) that is absent in the rough LPS of B. ovis. Their control and eradication require vaccination, but B. melitensis Rev 1, the only vaccine available, triggers anti-O-PS antibodies that interfere in the S-brucellae serodiagnosis. Since eradication and serological surveillance of the zoonotic species are priorities, Rev 1 is banned once B. melitensis is eradicated or where it never existed, hampering B. ovis control and eradication. To develop a B. ovis specific vaccine, we investigated three Brucella live vaccine candidates lacking N-formyl-perosamine O-PS: Bov::CAΔwadB (CO2-independent B. ovis with truncated LPS core oligosaccharide); Rev1::wbdRΔwbkC (carrying N-acetylated O-PS); and H38ΔwbkF (B. melitensis rough mutant with intact LPS core). After confirming their attenuation and protection against B. ovis in mice, were tested in rams for efficacy. H38ΔwbkF yielded similar protection to Rev 1 against B. ovis but Bov::CAΔwadB and Rev1::wbdRΔwbkC conferred no or poor protection, respectively. All H38ΔwbkF vaccinated rams developed a protracted antibody response in ELISA and immunoprecipitation B. ovis diagnostic tests. In contrast, all remained negative in Rose Bengal and complement fixation tests used routinely for B. melitensis diagnosis, though some became positive in S-LPS ELISA owing to LPS core epitope reactivity. Thus, H38ΔwbkF is an interesting candidate for the immunoprophylaxis of B. ovis in B. melitensis-free areas.


Assuntos
Vacina contra Brucelose , Brucella melitensis , Brucella ovis , Brucelose , Doenças dos Roedores , Doenças dos Ovinos , Animais , Anticorpos Antibacterianos , Brucella melitensis/genética , Brucella ovis/genética , Brucelose/prevenção & controle , Brucelose/veterinária , Masculino , Camundongos , Ovinos , Doenças dos Ovinos/prevenção & controle
17.
BMC Vet Res ; 18(1): 128, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366881

RESUMO

BACKGROUND: Brucella spp. is an important zoonotic pathogen responsible for brucellosis in humans and animals. Brucella abortus A19 strain is a widespread vaccine in China. However, it has a drawback of residual virulence in animals and humans. METHODS: In this study, the BALB/c mice were inoculated with either 100 µL PBS(control group, C group), 109 CFU/mL inactivated B. abortus A19 strain (I group), 105 CFU/mL (low-dose group, L group) 106 CFU/mL live B. abortus A19 strain (high-dose group, H group), or 105 CFU/mL live B. abortus A19 strain combined with 109 CFU/mL inactivated B. abortus A19 strain (LI group). Mice were challenged with B. abortus strain 2308 at 7 week post vaccination. Subsequently, the immune and protective efficacy of the vaccines were evaluated by measuring splenic bacterial burden, spleen weight, serum IgG, interferon-gamma (IFN-γ), interleukin-4 (IL-4) percentage of CD4 + and CD8 + T cells of mice via bacterial isolation, weighing, ELISA and flow cytometry, respectively. RESULTS: The splenic bacterial burden and spleen weight of the mice in group LI were mostly equivalent to the mice of group H. Moreover, Brucella-specific serum IgG, IFN-γ, IL-4, and the percentage of CD4+ and CD8+ T cells of the LI group mice were similar to those of the H group. In the subsequent challenge test, both vaccines conferred protective immunity to wild-type (WT) 2308 strain. In addition, the levels of IL-4 and IFN-γ, CD4+ and CD8+ T cells in these mice were similar to those of the mice in the H group. CONCLUSIONS: Combined immunization with low dose live vaccine and inactivated vaccine allowed to reduce the live B. abortus A19 vaccine, dose with an equivalent protection of the high-dose live vaccine.


Assuntos
Vacina contra Brucelose , Animais , Linfócitos T CD8-Positivos , Imunização/veterinária , Camundongos , Vacinação/veterinária , Vacinas de Produtos Inativados
18.
Can J Microbiol ; 68(3): 165-176, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34644507

RESUMO

Brucella abortus is a gram-negative intracellular parasite bacteria that causes serious health hazards in humans and animals. The type IV secretion system (T4SS), encoded by the virB promoter, has been identified as an important virulence factor for Brucella abortus, but its impact on Brucella abortus A19 remains unclear. In this study, the T4SS of Brucella abortus A19 was inactivated by deletion of the virB promoter, resulting in a mutant strain A19ΔvirB. Real-time PCR and western blotting analysis demonstrated that T4SS-related proteins were not expressed after virB promoter deletion. Moreover, the survival rate of A19 in high-salt and strong acidic environments decreased after virB promoter deletion. Compared to the parental strain A19, the A19ΔvirB mutant strain showed reduced growth rate in TSB, decreased invasion ability to macrophages and dendritic cells, and reduced virulence of the mutant strain in macrophages, dendritic cells, and mice. In addition, the A19ΔvirB mutant strain showed enhanced autophagy in macrophages and dendritic cells compared with A19, and the A19ΔvirB mutant strain was able to upregulate IL-6 and downregulate IL-10 in macrophages. These data help us to better understand the T4SS of the A19 vaccine strain and contribute to our efforts to improve Brucella vaccines.


Assuntos
Autofagia , Vacina contra Brucelose , Brucella abortus , Regiões Promotoras Genéticas , Sistemas de Secreção Tipo IV , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brucella abortus/genética , Brucella abortus/patogenicidade , Camundongos , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
19.
Foodborne Pathog Dis ; 19(8): 535-542, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35675662

RESUMO

Brucellosis is a zoonotic infection caused by the consumption of contaminated raw milk and dairy products. This study aims to compare survival rates of Brucella abortus RB51 and S19 vaccine strains to that of virulent B. abortus 2308 strain during the manufacture of fresh and ripened cheeses. To do this, we inoculated fresh pasteurized milk with B. abortus RB51, S19, or 2308 at a 6 × 108 colony-forming unit per milliliter concentration during the cheese making process. Cheese was manufactured at room temperature, then, fresh cheeses were conserved at either 4°C or 25°C for 7 days, while ripened cheeses were conserved for 31 days at the same temperatures. We measured B. abortus survival and pH values during different stages of the process. Our results confirm that all three strains can maintain viable cells in both types of cheeses throughout the process. Survival of B. abortus RB51 was 10 times lower than was the survival of the B. abortus S19 and B. abortus 2308 strains in both fresh and ripened cheeses. Our results also suggest that both temperature and pH can condition Brucella survival. In conclusion, B. abortus RB51 and S19 vaccine strains can survive throughout the manufacture and conservation processes of both fresh and ripened cheeses. In turn, this implies a potential health risk if cheeses contaminated with these strains were to be consumed.


Assuntos
Vacina contra Brucelose , Brucelose , Queijo , Brucella abortus , Brucelose/prevenção & controle , Humanos , Temperatura
20.
Arch Microbiol ; 203(5): 2591-2596, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33689001

RESUMO

This study was designed to introduce the recombinant Lactococcus lactis MG1363 as a cell factory candidate for production of recombinant Brucella melitensis Omp16-Human IL2 (r-Omp16-IL2) and to suggest it as a promising safe, non-pathogenic mucosal live vaccine against brucellosis. Three groups of BALB/c mice (10 mice per group) were intragastrically administrated with phosphate-buffered saline (PBS), L. lactis harboring the empty pAMJ2008 plasmid and with L. lactis expressing rOmp-IL2. The first two groups were classified as control groups and the third one is indicated as treatment group. Another group was injected by the intraperitoneal (i.p.) route with purified rOmp16-IL2 protein. The total serum IgG of each group was assessed with indirect ELISAs at two days before immunization and also two weeks after the last immunization. Results showed that BALB/c mice intragastrically administrated with L. lactis expressing rOmp-IL2 had dominant IgG response compared to the control (PBS administrated) group (P < 0.05). The level of IgG was significantly increased by intraperitoneally injection of recombinant Omp-IL2 in adjuvant compared to the intragastrically administration of PBS and L. lactis/pAMJ2008 as control groups, and also compared to L. lactis/pAMJ2008-rOmp-IL2 (P < 0.05). Our findings provide the use of L. lactis rOmp16-IL2 as a new promising alternative safe strategy than presently live attenuated vaccines toward developing an oral vaccine or subunit-based vaccine against brucellosis.


Assuntos
Anticorpos Antibacterianos/sangue , Proteínas da Membrana Bacteriana Externa/imunologia , Vacina contra Brucelose/imunologia , Brucella melitensis/imunologia , Imunoglobulina G/sangue , Interleucina-2/imunologia , Lactococcus lactis/genética , Adjuvantes Imunológicos , Animais , Proteínas da Membrana Bacteriana Externa/genética , Humanos , Imunidade , Interleucina-2/genética , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos , Proteínas Recombinantes de Fusão/imunologia , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA