Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(8): e1008703, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776994

RESUMO

Herpes simplex virus type 1 (HSV1) is a complicated structural agent with a sophisticated transcription process and a high infection rate. A vaccine against HSV1 is urgently needed. As multiple viral-encoded proteins, including structural and nonstructural proteins, contribute to immune response stimulation, an attenuated or deficient HSV1 vaccine may be relatively reliable. Advances in genomic modification technologies provide reliable means of constructing various HSV vaccine candidates. Based on our previous work, an M6 mutant with mutations in the UL7, UL41, LAT, Us3, Us11 and Us12 genes was established. The mutant exhibited low proliferation in cells and an attenuated phenotype in an animal model. Furthermore, in mice and rhesus monkeys, the mutant can induce remarkable serum neutralizing antibody titers and T cell activation and protect against HSV1 challenge by impeding viral replication, dissemination and pathogenesis.


Assuntos
Vacinas contra o Vírus do Herpes Simples/imunologia , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Animais , Feminino , Herpes Simples/prevenção & controle , Herpes Simples/virologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fenótipo , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas Virais/administração & dosagem , Proteínas Virais/genética , Proteínas Virais/imunologia
2.
J Infect Dis ; 224(9): 1509-1519, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33718970

RESUMO

Previous herpes simplex virus type 2 (HSV-2) vaccines have not prevented genital herpes. Concerns have been raised about the choice of antigen, the type of antibody induced by the vaccine, and whether antibody is present in the genital tract where infection occurs. We reported results of a trial of an HSV-2 replication-defective vaccine, HSV529, that induced serum neutralizing antibody responses in 78% of HSV-1-/HSV-2- vaccine recipients. Here we show that HSV-1-/HSV-2- vaccine recipients developed antibodies to epitopes of several viral proteins; however, fewer antibody epitopes were detected in vaccine recipients compared with naturally infected persons. HSV529 induced antibodies that mediated HSV-2-specific natural killer (NK) cell activation. Depletion of glycoprotein D (gD)-binding antibody from sera reduced neutralizing titers by 62% and NK cell activation by 81%. HSV-2 gD antibody was detected in cervicovaginal fluid at about one-third the level of that in serum. A vaccine that induces potent serum antibodies transported to the genital tract might reduce HSV genital infection.


Assuntos
Anticorpos Antivirais/sangue , Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpes Simples/prevenção & controle , Herpesvirus Humano 2/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem , Epitopos , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Humanos , Imunização
3.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33028712

RESUMO

Estradiol (E2) is a sex hormone which has been shown to be protective against sexually transmitted infections such as herpes simplex virus 2 (HSV-2). However, few studies have examined the underlying mechanisms by which this occurs. Here, we investigated the effect of E2 on the establishment of memory T cells post-intranasal immunization with HSV-2. CD4+ T cell responses first appeared in the upper respiratory tract (URT) within 3 days postimmunization before being detected in the female reproductive tract (FRT) at 7 days. E2 treatment resulted in greater and earlier Th17 responses, which preceded augmented Th1 responses at these sites. The CD4+ T cells persisted in the URT for up to 28 days, and E2 treatment resulted in higher frequencies of memory T cells. Intranasal immunization also led to the establishment of CD4+ tissue-resident memory T cells (TRM cells) in the FRT, and E2 treatment resulted in increased Th1 and Th17 TRM cells. When the migration of circulating T cells into the FRT was blocked by FTY720, immunized E2-treated mice remained completely protected against subsequent genital HSV-2 challenge compared to non-E2 controls, confirming that TRM cells alone are adequate for protection in these mice. Finally, the enhanced vaginal Th1 TRM cells present in E2-treated mice were found to be modulated through an interleukin 17 (IL-17)-mediated pathway, as E2-treated IL-17A-deficient mice had impaired establishment of Th1 TRM cells. This study describes a novel role for E2 in enhancing CD4+ memory T cells and provides insight on potential strategies for generating optimal immunity during vaccination.IMPORTANCE Herpes simplex virus 2 (HSV-2) is a highly prevalent sexually transmitted infection for which there is currently no vaccine available. Interestingly, the female sex hormone estradiol has been shown to be protective against HSV-2. However, the underlying mechanisms by which this occurs remains relatively unknown. Our study demonstrates that under the influence of estradiol treatment, intranasal immunization with an attenuated strain of HSV-2 leads to enhanced establishment of antiviral memory T cell responses in the upper respiratory tract and female reproductive tract. In these sites, estradiol treatment leads to greater Th17 memory cells, which precede enhanced Th1 memory responses. Consequently, the T cell responses mounted by tissue-resident memory cells in the female reproductive tract of estradiol-treated mice are sufficient to protect mice against vaginal HSV-2 challenge. This study offers important insights regarding the regulation of mucosal immunity by hormones and on potential strategies for generating optimal immunity during vaccination.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Estradiol/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 2/imunologia , Memória Imunológica , Interleucina-17/imunologia , Vacinação/métodos , Administração Intranasal , Animais , Linfócitos T CD8-Positivos/imunologia , Estradiol/administração & dosagem , Feminino , Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Imunidade nas Mucosas , Camundongos , Sistema Respiratório/imunologia , Células Th1/imunologia , Células Th17/imunologia , Vagina/imunologia
4.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597775

RESUMO

Demyelinating central nervous system (CNS) disorders like multiple sclerosis (MS) and acute disseminated encephalomyelitis (ADEM) have been difficult to study and treat due to the lack of understanding of their etiology. Numerous cases point to the link between herpes simplex virus (HSV) infection and multifocal CNS demyelination in humans; however, convincing evidence from animal models has been missing. In this work, we found that HSV-1 infection of the cotton rat Sigmodon hispidus via a common route (lip abrasion) can cause multifocal CNS demyelination and inflammation. Remyelination occurred shortly after demyelination in HSV-1-infected cotton rats but could be incomplete, resulting in "scars," further supporting an association between HSV-1 infection and multifocal demyelinating disorders. Virus was detected sequentially in the lip, trigeminal ganglia, and brain of infected animals. Brain pathology developed primarily on the ipsilateral side of the brain stem, in the cerebellum, and contralateral side of the forebrain/midbrain, suggesting that the changes may ascend along the trigeminal lemniscus pathway. Neurologic defects occasionally detected in infected animals (e.g., defective whisker touch and blink responses and compromised balance) could be representative of the brain stem/cerebellum dysfunction. Immunization of cotton rats with a split HSV-1 vaccine protected animals against viral replication and brain pathology, suggesting that vaccination against HSV-1 may protect against demyelinating disorders.IMPORTANCE Our work demonstrates for the first time a direct association between infection with herpes simplex virus 1, a ubiquitous human pathogen generally associated with facial cold sores, and multifocal brain demyelination in an otherwise normal host, the cotton rat Sigmodon hispidus For a long time, demyelinating diseases were considered to be autoimmune in nature and were studied by indirect methods, such as immunizing animals with myelin components or feeding them toxic substances that induce demyelination. Treatment against demyelinating diseases has been elusive, partially because of their unknown etiology. This work provides the first experimental evidence for the role of HSV-1 as the etiologic agent of multifocal brain demyelination in a normal host and suggests that vaccination against HSV-1 can help to combat demyelinating disorders.


Assuntos
Doenças Desmielinizantes/prevenção & controle , Encefalite/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/efeitos dos fármacos , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/imunologia , Tronco Encefálico/patologia , Tronco Encefálico/virologia , Cerebelo/efeitos dos fármacos , Cerebelo/imunologia , Cerebelo/patologia , Cerebelo/virologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Modelos Animais de Doenças , Encefalite/imunologia , Encefalite/patologia , Encefalite/virologia , Feminino , Herpes Simples/imunologia , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Humanos , Masculino , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/imunologia , Prosencéfalo/patologia , Prosencéfalo/virologia , Sigmodontinae , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Vacinação , Carga Viral/efeitos dos fármacos
5.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29899087

RESUMO

Herpes simplex virus 1 (HSV-1) is a prevalent human pathogen that infects the cornea, causing potentially blinding herpetic disease. A clinical herpes vaccine is still lacking. In the present study, a novel prime/pull vaccine was tested in a human leukocyte antigen (HLA) transgenic rabbit model of ocular herpes (HLA Tg rabbits). Three peptide epitopes were selected, from the HSV-1 membrane glycoprotein C (UL44400-408), the DNA replication binding helicase (UL9196-204), and the tegument protein (UL25572-580), all preferentially recognized by CD8+ T cells from "naturally protected" HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who never had recurrent corneal herpetic disease). HLA Tg rabbits were immunized with a mixture of these three ASYMP CD8+ T cell peptide epitopes (UL44400-408, UL9196-204, and UL25572-580), which were delivered subcutaneously with CpG2007 adjuvant (prime). Fifteen days later, half of the rabbits received a topical ocular treatment with a recombinant neurotropic adeno-associated virus type 8 (AAV8) vector expressing the T cell-attracting CXCL10 chemokine (pull). The frequency and function of HSV-specific CD8+ T cells induced by the prime/pull vaccine were assessed in the peripheral blood, cornea, and trigeminal ganglion (TG). Compared to the cells generated in response to peptide immunization alone, the peptide/CXCL10 prime/pull vaccine generated frequent polyfunctional gamma interferon-positive (IFN-γ+) CD107+ CD8+ T cells that infiltrated both the cornea and TG. CD8+ T cell mobilization into the cornea and TG of prime/pull-vaccinated rabbits was associated with a significant reduction in corneal herpesvirus infection and disease following an ocular HSV-1 (strain McKrae) challenge. These findings draw attention to the novel prime/pull vaccine strategy for mobilizing antiviral CD8+ T cells into tissues to protect against herpesvirus infection and disease.IMPORTANCE There is an urgent need for a vaccine against widespread herpes simplex virus infections. The present study demonstrates that immunization of HLA transgenic rabbits with a peptide/CXCL10 prime/pull vaccine triggered mobilization of HSV-specific CD8+ T cells locally into the cornea and TG, the sites of acute and latent herpesvirus infections, respectively. Mobilization of antiviral CD8+ T cells into the cornea and TG of rabbits that received the prime/pull vaccine was associated with protection against ocular herpesvirus infection and disease following an ocular HSV-1 challenge. These results highlight the importance of the prime/pull vaccine strategy to bolster the number and function of protective CD8+ T cells within infected tissues.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL10/metabolismo , Córnea/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Ceratite Herpética/prevenção & controle , Subpopulações de Linfócitos T/imunologia , Gânglio Trigeminal/imunologia , Animais , Animais Geneticamente Modificados , Quimiocina CXCL10/administração & dosagem , Modelos Animais de Doenças , Epitopos/imunologia , Antígenos HLA/genética , Antígenos HLA/metabolismo , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Humanos , Interferon gama/análise , Ceratite Herpética/patologia , Ceratite Herpética/virologia , Proteína 1 de Membrana Associada ao Lisossomo/análise , Coelhos , Simplexvirus/imunologia , Simplexvirus/isolamento & purificação , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Carga Viral
6.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122977

RESUMO

Viral fitness dictates virulence and capacity to evade host immune defenses. Understanding the biological underpinnings of such features is essential for rational vaccine development. We have previously shown that the live-attenuated herpes simplex virus 1 (HSV-1) mutant lacking the nuclear localization signal (NLS) on the ICP0 gene (0ΔNLS) is sensitive to inhibition by interferon beta (IFN-ß) in vitro and functions as a highly efficacious experimental vaccine. Here, we characterize the host immune response and in vivo pathogenesis of HSV-1 0ΔNLS relative to its fully virulent parental strain in C57BL/6 mice. Additionally, we explore the role of type 1 interferon (IFN-α/ß) signaling on virulence and immunogenicity of HSV-1 0ΔNLS and uncover a probable sex bias in the induction of IFN-α/ß in the cornea during HSV-1 infection. Our data show that HSV-1 0ΔNLS lacks neurovirulence even in highly immunocompromised mice lacking the IFN-α/ß receptor. These studies support the translational viability of the HSV-1 0ΔNLS vaccine strain by demonstrating that, while it is comparable to a virulent parental strain in terms of immunogenicity, HSV-1 0ΔNLS does not induce significant tissue pathology.IMPORTANCE HSV-1 is a common human pathogen associated with a variety of clinical presentations ranging in severity from periodic "cold sores" to lethal encephalitis. Despite the consistent failures of HSV subunit vaccines in clinical trials spanning the past 28 years, opposition to live-attenuated HSV vaccines predicated on unfounded safety concerns currently limits their widespread acceptance. Here, we demonstrate that a live-attenuated HSV-1 vaccine has great translational potential.


Assuntos
Córnea/metabolismo , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/imunologia , Interferon Tipo I/fisiologia , Imunidade Adaptativa , Animais , Córnea/imunologia , Córnea/virologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vacinação , Vacinas Atenuadas/imunologia
7.
Curr Opin Ophthalmol ; 29(4): 340-346, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29846207

RESUMO

PURPOSE OF REVIEW: Ophthalmic herpes simplex virus (HSV) of the anterior segment is responsible for a range of corneal complications such as scarring, thinning, neovascularization, and severe loss of vision. This review provides current guidelines for treating anterior segment disease related to HSV. RECENT FINDINGS: We first review findings from the Herpetic Eye Disease Study (HEDS) clinical trials, and then review new topical and antiviral therapies developed since the HEDS studies. The development of vaccines to prevent recurrent episodes of herpetic infection is briefly reviewed. New corneal surgical procedures, developed since HEDS, may put patients at risk for ocular HSV disease: cross-linking and excimer refractive surgery. SUMMARY: HEDS established the standard of HSV ocular therapy and is still valid today. However, newer antivirals may provide easier compliance with improved bioavailability, efficacy, dosage, and tolerability. Further research is needed to prevent latency of HSV, decrease recurrences, and more effectively treat necrotizing keratitis associated with HSV.


Assuntos
Antivirais/uso terapêutico , Infecções Oculares Virais/tratamento farmacológico , Ceratite Herpética/tratamento farmacológico , Infecções Oculares Virais/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Humanos , Ceratite Herpética/prevenção & controle , Recidiva , Simplexvirus/patogenicidade
8.
Acta Virol ; 62(2): 164-171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29895157

RESUMO

HSV-1 is a mucosal and nerve pathogen, whose morbidity shows an increasing tendency. Although several antiviral drugs exist, there is no cure for viral latency for virtually all carriers. There is an urgent need for an HSV-1 vaccine to control infection and limit its spread and recurrence. The UL18 gene, encoding a vital component of capsids, is one of the essential genes of HSV-1. Deletion of UL18 from HSV-1 may be exploited as a new approach to develop an attenuated vaccine. The purpose of this study was to construct a DNA vaccine with a full-length UL18 gene deletion of the HSV-1 genome that can induce an effective immune response. A UL18-knockdown plasmid (BAC-HSV-1ΔUL18) was constructed using the bacterial markerless gene knockout system, consisting of the functional pREDI plasmid and BAC-HSV-1 plasmid. Mice were immunized weekly for 3 weeks, and at 1 week post immunization, blood and splenocyte samples of vaccinated and control groups of mice were prepared for immunogenicity assessment. The level of immune response was evaluated using a DTH assay, cytokine determination, and splenocyte proliferation assay. Combination of the pREDI plasmid and BAC-HSV-1 plasmid provides an effective bacterial markerless gene knockout system. Using two-step homologous recombination with the UL18 homologous recombination fragment constructed by multistep PCR amplification, BAC-HSV-1ΔUL18 plasmid vaccine was successfully constructed and was found to significantly enhance cellular immune responses.


Assuntos
Proteínas do Capsídeo/genética , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Animais , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/imunologia , Deleção de Genes , Herpes Simples/prevenção & controle , Herpes Simples/virologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/genética , Herpesvirus Humano 1/genética , Humanos , Imunização , Masculino , Camundongos , Deleção de Sequência , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
9.
J Virol ; 90(11): 5514-5529, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27030264

RESUMO

UNLABELLED: Correlates of immunologic protection requisite for an efficacious herpes simplex virus 1 (HSV-1) vaccine remain unclear with respect to viral pathogenesis and clinical disease. In the present study, mice were vaccinated with a novel avirulent, live attenuated virus (0ΔNLS) or an adjuvanted glycoprotein D subunit (gD-2) similar to that used in several human clinical trials. Mice vaccinated with 0ΔNLS showed superior protection against early viral replication, neuroinvasion, latency, and mortality compared to that of gD-2-vaccinated or naive mice following ocular challenge with a neurovirulent clinical isolate of HSV-1. Moreover, 0ΔNLS-vaccinated mice exhibited protection against ocular immunopathology and maintained corneal mechanosensory function. Vaccinated mice also showed suppressed T cell activation in the draining lymph nodes following challenge. Vaccine efficacy correlated with serum neutralizing antibody titers. Humoral immunity was identified as the correlate of protection against corneal neovascularization, HSV-1 shedding, and latency through passive immunization. Overall, 0ΔNLS affords remarkable protection against HSV-1-associated ocular sequelae by impeding viral replication, dissemination, and establishment of latency. IMPORTANCE: HSV-1 manifests in a variety of clinical presentations ranging from a rather benign "cold sore" to more severe forms of infection, including necrotizing stromal keratitis and herpes simplex encephalitis. The present study was undertaken to evaluate a novel vaccine to ocular HSV-1 infection not only for resistance to viral replication and spread but also for maintenance of the visual axis. The results underscore the necessity to reconsider strategies that utilize attenuated live virus as opposed to subunit vaccines against ocular HSV-1 infection.


Assuntos
Córnea/patologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Imunidade Humoral , Ceratite Herpética/imunologia , Ceratite Herpética/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Córnea/imunologia , Córnea/virologia , Feminino , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpesvirus Humano 1/patogenicidade , Humanos , Imunização Passiva , Ceratite Herpética/virologia , Ativação Linfocitária , Camundongos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/imunologia , Eliminação de Partículas Virais
10.
J Virol ; 89(13): 6619-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25878105

RESUMO

UNLABELLED: Most blinding ocular herpetic disease is due to reactivation of herpes simplex virus 1 (HSV-1) from latency rather than to primary acute infection. No herpes simplex vaccine is currently available for use in humans. In this study, we used the HLA-A*02:01 transgenic (HLA Tg) rabbit model of ocular herpes to assess the efficacy of a therapeutic vaccine based on HSV-1 gD epitopes that are recognized mainly by CD8(+) T cells from "naturally" protected HLA-A*02:01-positive, HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease). Three ASYMP CD8(+) T-cell epitopes (gD(53-61), gD(70-78), and gD(278-286)) were linked with a promiscuous CD4(+) T-cell epitope (gD(287-317)) to create 3 separate pairs of CD4-CD8 peptides, which were then each covalently coupled to an Nε-palmitoyl-lysine moiety, a Toll-like receptor 2 (TLR-2) ligand. This resulted in the construction of 3 CD4-CD8 lipopeptide vaccines. Latently infected HLA Tg rabbits were immunized with a mixture of these 3 ASYMP lipopeptide vaccines, delivered as eye drops in sterile phosphate-buffered saline (PBS). The ASYMP therapeutic vaccination (i) induced HSV-specific CD8(+) T cells that prevent HSV-1 reactivation ex vivo from latently infected explanted trigeminal ganglia (TG), (ii) significantly reduced HSV-1 shedding detected in tears, (iii) boosted the number and function of HSV-1 gD epitope-specific CD8(+) T cells in draining lymph nodes (DLN), conjunctiva, and TG, and (iv) was associated with fewer exhausted HSV-1 gD-specific PD-1(+) TIM-3+ CD8(+) T cells. The results underscore the potential of an ASYMP CD8(+) T-cell epitope-based therapeutic vaccine strategy against recurrent ocular herpes. IMPORTANCE: Seventy percent to 90% of adults harbor herpes simplex virus 1 (HSV-1), which establishes lifelong latency in sensory neurons of the trigeminal ganglia. This latent state sporadically switches to spontaneous reactivation, resulting in viral shedding in tears. Most blinding herpetic disease in humans is due to reactivation of HSV-1 from latency rather than to primary acute infection. To date, there is no licensed therapeutic vaccine that can effectively stop or reduce HSV-1 reactivation from latently infected sensory ganglia and the subsequent shedding in tears. In the present study, we demonstrated that topical ocular therapeutic vaccination of latently infected HLA transgenic rabbits with a lipopeptide vaccine that contains exclusively human "asymptomatic" CD8(+) T-cell epitopes successfully decreased spontaneous HSV-1 reactivation, as judged by a significant reduction in spontaneous shedding in tears. The findings should guide the clinical development of a safe and effective T-cell-based therapeutic herpes vaccine.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Imunização/métodos , Ceratite Herpética/prevenção & controle , Eliminação de Partículas Virais , Animais , Animais Geneticamente Modificados , Linfócitos T CD8-Positivos/química , Anergia Clonal , Modelos Animais de Doenças , Epitopos de Linfócito T/genética , Feminino , Receptor Celular 2 do Vírus da Hepatite A , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/genética , Herpesvirus Humano 1/genética , Humanos , Ceratite Herpética/imunologia , Subpopulações de Linfócitos/química , Subpopulações de Linfócitos/imunologia , Proteínas de Membrana/análise , Fosfoproteínas , Receptor de Morte Celular Programada 1/análise , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
11.
J Infect Dis ; 209(6): 828-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24285844

RESUMO

BACKGROUND: Previously we conducted a double-blind controlled, randomized efficacy field trial of gD-2 HSV vaccine adjuvanted with ASO4 in 8323 women. Subjects had been previously selected to be seronegative for HSV-1 and HSV-2. We found that vaccine was 82% protective against HSV-1 genital disease, but offered no significant protection against HSV-2 genital disease. METHODS: To better understand the results of the efficacy study, post-vaccination anti-gD-2 antibody concentrations from all HSV infected subjects and matched uninfected controls were measured. Three models were used to determine whether thes responses correlated with protection against HSV infection or disease. Similarly, cellular immune responses from a subset of subjects and matched controls were evaluated for a correlation with HSV protection. RESULTS: Antibodies to gD-2 correlated with protection against HSV-1 infection with higher antibody concentration associated with higher efficacy. Cellular immune responses to gD-2 did not correlate with protection. CONCLUSIONS: The protection against HSV-1 infection observed in the Herpevac Trial for Women was associated with antibodies directed against the vaccine. Clinical Trials Registration NCT00057330.


Assuntos
Herpes Genital/imunologia , Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Estudos de Casos e Controles , Citocinas/sangue , Método Duplo-Cego , Ensaio de Imunoadsorção Enzimática , Feminino , Herpes Genital/sangue , Humanos , Estudos Prospectivos
12.
Curr Opin Infect Dis ; 27(1): 75-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24335720

RESUMO

PURPOSE OF REVIEW: Genital herpes has a high global prevalence and burden of disease. This manuscript highlights recent advances in our understanding of genital herpes simplex virus (HSV) infections. RECENT FINDINGS: Studies demonstrate a changing epidemiological landscape with an increasing proportion of genital herpes cases associated with HSV type 1. There is also growing evidence that the majority of infected individuals exhibit frequent, brief shedding episodes that are most often asymptomatic, which likely contribute to high HSV transmission rates. Given this finding as well as readily available serological assays, some have proposed that routine HSV screening be performed; however, this remains controversial and is not currently recommended. Host immune responses, particularly local CD4 and CD8 T cell activity, are crucial for HSV control and clearance following initial infection, during latency and after reactivation. Prior HSV immunity may also afford partial protection against HSV reinfection and disease. Although HSV vaccine trials have been disappointing to date and existing antiviral medications are limited, novel prophylactic and therapeutic modalities are currently in development. SUMMARY: Although much remains unknown about genital herpes, improved knowledge of HSV epidemiology, pathogenesis and host immunity may help guide new strategies for disease prevention and control.


Assuntos
Herpes Genital , Simplexvirus , Antivirais/uso terapêutico , Herpes Genital/diagnóstico , Herpes Genital/tratamento farmacológico , Herpes Genital/imunologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Interações Hospedeiro-Patógeno/imunologia , Humanos , Simplexvirus/imunologia , Eliminação de Partículas Virais
13.
J Virol ; 86(8): 4586-98, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22318147

RESUMO

A herpes simplex virus 2 (HSV-2) glycoprotein E deletion mutant (gE2-del virus) was evaluated as a replication-competent, attenuated live virus vaccine candidate. The gE2-del virus is defective in epithelial cell-to-axon spread and in anterograde transport from the neuron cell body to the axon terminus. In BALB/c and SCID mice, the gE2-del virus caused no death or disease after vaginal, intravascular, or intramuscular inoculation and was 5 orders of magnitude less virulent than wild-type virus when inoculated directly into the brain. No infectious gE2-del virus was recovered from dorsal root ganglia (DRG) after multiple routes of inoculation; however, gE2-del DNA was detected by PCR in lumbosacral DRG at a low copy number in some mice. Importantly, no recurrent vaginal shedding of gE2-del DNA was detected in immunized guinea pigs. Intramuscular immunization outperformed subcutaneous immunization in all parameters evaluated, although individual differences were not significant, and two intramuscular immunizations were more protective than one. Immunized animals had reduced vaginal disease, vaginal titers, DRG infection, recurrent genital lesions, and recurrent vaginal shedding of HSV-2 DNA; however, protection was incomplete. A combined modality immunization using live virus and HSV-2 glycoprotein C and D subunit antigens in guinea pigs did not totally eliminate recurrent lesions or recurrent vaginal shedding of HSV-2 DNA. The gE2-del virus used as an immunotherapeutic vaccine in previously HSV-2-infected guinea pigs greatly reduced the frequency of recurrent genital lesions. Therefore, the gE2-del virus is safe, other than when injected at high titer into the brain, and is efficacious as a prophylactic and immunotherapeutic vaccine.


Assuntos
Deleção de Genes , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/imunologia , Neurônios/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , DNA Viral , Feminino , Gânglios Espinais/virologia , Cobaias , Herpes Genital/mortalidade , Herpes Genital/prevenção & controle , Herpes Genital/terapia , Herpes Simples/mortalidade , Herpes Simples/prevenção & controle , Herpes Simples/terapia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/efeitos adversos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Medula Espinal/virologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia
14.
J Virol ; 86(12): 6563-74, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22491465

RESUMO

Genital herpes is caused by herpes simplex virus 1 (HSV-1) and HSV-2, and its incidence is constantly increasing in the human population. Regardless of the clinical manifestation, HSV-1 and HSV-2 infections are highly transmissible to sexual partners and enhance susceptibility to other sexually transmitted infections. An effective vaccine is not yet available. Here, HSV-1 glycoprotein B (gB1) was delivered by a feline immunodeficiency virus (FIV) vector and tested against HSV-1 and HSV-2 vaginal challenges in C57BL/6 mice. The gB1 vaccine elicited cross-neutralizing antibodies and cell-mediated responses that protected 100 and 75% animals from HSV-1- and HSV-2-associated severe disease, respectively. Two of the eight fully protected vaccinees underwent subclinical HSV-2 infection, as demonstrated by deep immunosuppression and other analyses. Finally, vaccination prevented death in 83% of the animals challenged with a HSV-2 dose that killed 78 and 100% naive and mock-vaccinated controls, respectively. Since this FIV vector can accommodate two or more HSV immunogens, this vaccine has ample potential for improvement and may become a candidate for the development of a truly effective vaccine against genital herpes.


Assuntos
Proteção Cruzada , Herpes Genital/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 2/fisiologia , Proteínas do Envelope Viral/imunologia , Animais , Feminino , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Herpes Genital/prevenção & controle , Herpes Genital/virologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/imunologia , Humanos , Imunidade Celular , Vírus da Imunodeficiência Felina/genética , Vírus da Imunodeficiência Felina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Vacinação , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética
15.
Cytotherapy ; 15(3): 352-61, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23579060

RESUMO

BACKGROUND AIMS: Dendritic cells (DCs) are the most potent antigen presenting cells of the immune system and have been under intense study with regard to their use in immunotherapy against cancer and infectious disease agents. In the present study, DCs were employed to assess their value in protection against live virus challenge in an experimental model using lethal and latent herpes simplex virus (HSV) infection in Balb/c mice. METHODS: DCs obtained ex vivo in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 were loaded with HSV-1 proteins (DC/HSV-1 vaccine). Groups of mice were vaccinated twice, 7 days apart, via subcutaneous, intraperitoneal or intramuscular routes with DC/HSV-1 and with mock (DC without virus protein) and positive (alum adjuvanted HSV-1 proteins [HSV-1/ALH]) control vaccines. After measuring anti-HSV-1 antibody levels in blood samples, mice were given live HSV-1 intraperitoneally or via ear pinna to assess the protection level of the vaccines with respect to lethal or latent infection challenge. RESULTS: Intramuscular, but not subcutaneous or intraperitoneal, administration of DC/HSV-1 vaccine provided complete protection against lethal challenge and establishment of latent infection as assessed by death and virus recovery from the trigeminal ganglia. It was also shown that the immunity was not associated with antibody production because DC/HSV-1 vaccine, as opposed to HSV-1/ALH vaccine, produced very little, if any, HSV-1-specific antibody. CONCLUSIONS: Overall, our results may have some impact on the design of vaccines against genital HSV as well as chronic viral infections such as hepatitis B virus, hepatitis C virus and human immunodeficiency virus.


Assuntos
Anticorpos Antivirais , Células Dendríticas/citologia , Imunoterapia , Simplexvirus/imunologia , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Herpes Simples/virologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/imunologia , Humanos , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos , Simplexvirus/patogenicidade , Proteínas do Envelope Viral/imunologia
16.
Rev Med Virol ; 22(5): 285-300, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22396215

RESUMO

HSV is among the most common human pathogens in the world. It is known to cause painful, persistent skin lesions, while also being the most common cause of fatal non-epidemic encephalitis as well as the leading cause of corneal blindness. The development of prophylactic vaccines could substantially reduce global health problems associated with HSV. So far, HSV vaccine strategies have shown noticeable efficacy in early development during preclinical phases but remained unsuccessful or unproven in human trials. New understanding of how the immune system mounts a defence against HSV offers practical strategies for vaccine development. A number of promising vaccine candidates are currently awaiting clinical development or already undergoing clinical testing. Therefore, this is a suitable time to assess the progress of HSV vaccine development and consider existing challenges and future improvements needed to achieve an effective prophylactic HSV vaccine.


Assuntos
Descoberta de Drogas/tendências , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpes Simples/epidemiologia , Herpes Simples/prevenção & controle , Ensaios Clínicos como Assunto , Herpes Simples/imunologia , Humanos
17.
J Immunol ; 184(6): 2958-2965, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20164421

RESUMO

The diversity of the pathogen-specific T cell repertoire is believed to be important in allowing recognition of different pathogen epitopes and their variants and thereby reducing the opportunities for mutation-driven pathogen escape. However, the extent to which the TCR repertoire can be manipulated by different vaccine strategies so as to obtain broad diversity and optimal protection is incompletely understood. We have investigated the influence of the infectious/inflammatory context on the TCR diversity of the CD8(+) T cell response specific for the immunodominant epitope in C57BL/6 mice, derived from glycoprotein B of HSV-1. To that effect, we compared TCR V segment utilization, CDR3 length, and sequence diversity of the response to natural HSV-1 infection with those elicited by either Listeria monocytogenes or vaccinia virus expressing the immunodominant epitope in C57BL/6 mice. We demonstrate that although the type of infection in which the epitope was encountered can influence the magnitude of the CD8(+) T cell responses, TCR beta-chain repertoires did not significantly differ among the three infections. These results suggest that widely different live vaccine vectors may have little impact upon the diversity of the induced CTL response, which has important implications for the design of live CTL vaccine strategies against acute and chronic infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Epitopos Imunodominantes/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/biossíntese , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/microbiologia , Linfócitos T CD8-Positivos/virologia , Sistemas de Liberação de Medicamentos , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Epitopos Imunodominantes/metabolismo , Listeria monocytogenes/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Vacínia/imunologia , Vacínia/metabolismo , Vacínia/virologia , Vaccinia virus/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo
18.
J Immunol ; 184(5): 2561-71, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20124097

RESUMO

We introduced a novel humanized HLA-A*0201 transgenic (HLA Tg) rabbit model to assess the protective efficacy of a human CD8(+) T cell epitope-based vaccine against primary ocular herpes infection and disease. Each of the three immunodominant human CD8(+) T cell peptide epitopes from HSV-1 glycoprotein D (gD(53-61), gD(70-78), and gD(278-286)) were joined with a promiscuous human CD4(+) T cell peptide epitope (gD(49-82)) to construct three separate pairs of CD4-CD8 peptides. Each CD4-CD8 peptide pair was then covalently linked to an N(epsilon)-palmitoyl-lysine residue via a functional base lysine amino group to construct CD4-CD8 lipopeptides. HLA Tg rabbits were immunized s.c. with a mixture of the three CD4-CD8 HSV-1 gD lipopeptides. The HSV-gD-specific T cell responses induced by the mixture of CD4-CD8 lipopeptide vaccine and the protective efficacy against acute virus replication and ocular disease were determined. Immunization induced HSV-gD(49-82)-specific CD4(+) T cells in draining lymph node (DLN); induced HLA-restricted HSV-gD(53-61), gD(70-78), and gD(278-286)-specific CD8(+) T cells in DLN, conjunctiva, and trigeminal ganglia and reduced HSV-1 replication in tears and corneal eye disease after ocular HSV-1 challenge. In addition, the HSV-1 epitope-specific CD8(+) T cells induced in DLNs, conjunctiva, and the trigeminal ganglia were inversely proportional with corneal disease. The humanized HLA Tg rabbits appeared to be a useful preclinical animal model for investigating the immunogenicity and protective efficacy of human CD8(+) T cell epitope-based prophylactic vaccines against ocular herpes. The relevance of HLA Tg rabbits for future investigation of human CD4-CD8 epitope-based therapeutic vaccines against recurrent HSV-1 is discussed.


Assuntos
Epitopos de Linfócito T/imunologia , Antígenos HLA-A/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Ceratite Herpética/imunologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Túnica Conjuntiva/imunologia , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/virologia , Córnea/imunologia , Córnea/metabolismo , Córnea/virologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Antígenos HLA-A/genética , Antígeno HLA-A2 , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/genética , Humanos , Imunização , Ceratite Herpética/prevenção & controle , Ceratite Herpética/virologia , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/virologia , Lisina/análogos & derivados , Lisina/química , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Coelhos , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
19.
Ter Arkh ; 83(11): 44-7, 2011.
Artigo em Russo | MEDLINE | ID: mdl-22312884

RESUMO

AIM: To assess efficacy of two-stage treatment of severe genital herpes (GH) with regular recurrences: combined use of antivirus medicines with interferon preparations and its inductors followed by antirecurrence vaccine therapy. MATERIAL AND METHODS: Two-stage treatment was given to 100 patients suffering from GH with severe regular recurrences. One-stage treatment included famvir in combination with interferon (viferon) or interferon inductors (amixin, cycloferon) and antioxidants. Stage two treatment consisted of vaccine therapy of patients who failed prophylactic standard vaccination by allergometric technique. RESULTS: The first stage treatment prolonged recurrence-free period 2-3-fold in more than 85% patients, improved quality of life. Stage-two treatment resulted in long-term clinicoimmunological remission which is necessary for conduction of anti-recurrence vaccine treatment. CONCLUSION: Changes in therapeutic-preventive policy in patients with recurrent GH with regular recurrence (2 stage of treatment) prolong recurrence-free intervals, improve quality of life and social adaptation of patients.


Assuntos
Antivirais/uso terapêutico , Herpes Genital/tratamento farmacológico , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Indutores de Interferon/uso terapêutico , Acridinas/uso terapêutico , Antioxidantes/uso terapêutico , Herpes Genital/prevenção & controle , Humanos , Interferon alfa-2 , Interferon-alfa/uso terapêutico , Qualidade de Vida , Proteínas Recombinantes/uso terapêutico , Indução de Remissão/métodos , Prevenção Secundária , Índice de Gravidade de Doença , Tilorona/uso terapêutico
20.
Front Immunol ; 12: 789454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868077

RESUMO

Herpes simplex virus type-1 (HSV-1) ocular infection is one of the leading causes of infectious blindness in developed countries. The resultant herpetic keratitis (HK) is caused by an exacerbated reaction of the adaptive immune response that persists beyond virus clearance causing substantial damage to the cornea. Intramuscular immunization of mice with the HSV-1(VC2) live-attenuated vaccine strain has been shown to protect mice against lethal ocular challenge. Herein, we show that following ocular challenge, VC2 vaccinated animals control ocular immunopathogenesis in the absence of neutralizing antibodies on ocular surfaces. Ocular protection is associated with enhanced intracorneal infiltration of γδ T cells compared to mock-vaccinated animals. The observed γδ T cellular infiltration was inversely proportional to the infiltration of neutrophils, the latter associated with exacerbated tissue damage. Inhibition of T cell migration into ocular tissues by the S1P receptors agonist FTY720 produced significant ocular disease in vaccinated mice and marked increase in neutrophil infiltration. These results indicate that ocular challenge of mice immunized with the VC2 vaccine induce a unique ocular mucosal response that leads into the infiltration of γδ T cells resulting in the amelioration of infection-associated immunopathogenesis.


Assuntos
Quimiotaxia de Leucócito , Córnea/imunologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpesvirus Humano 1/imunologia , Linfócitos Intraepiteliais/imunologia , Ceratite Herpética/prevenção & controle , Vacinação , Animais , Córnea/patologia , Córnea/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/patogenicidade , Interações Hospedeiro-Patógeno , Injeções Intramusculares , Linfócitos Intraepiteliais/virologia , Ceratite Herpética/imunologia , Ceratite Herpética/patologia , Ceratite Herpética/virologia , Linfangiogênese , Camundongos Endogâmicos BALB C , Neovascularização Patológica , Infiltração de Neutrófilos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA