RESUMO
Daboxin P, reported earlier from the venom of Daboia russellii, disturbs the blood coagulation cascade by targeting factor X and factor Xa. The present study exhibits that Daboxin P also inhibits platelet aggregation induced by various agonists. The thrombin-induced platelet aggregation was inhibited maximum whereas inhibition of collagen-induced platelet aggregation was found to be 50% and no inhibition of adenosine diphosphate (ADP) and arachidonic acid-induced aggregation was observed. Daboxin P dose-dependently inhibited the thrombin-induced platelet aggregation with Anti-Aggregation 50 (AD50 ) dose of 55.166 nM and also reduced the thrombin-mediated calcium influx. In-silico interaction studies suggested that Daboxin P binds to thrombin and blocks its interaction with its receptor on the platelet surface. Quenching of thrombin's emission spectrum by Daboxin P and electrophoretic profiles of pull-down assay further reveals the binding between Daboxin P and thrombin. Thus, the present study demonstrates that Daboxin P inhibits thrombin-induced platelet aggregation by binding to thrombin.
Assuntos
Agregação Plaquetária , Trombina , Trombina/farmacologia , Fosfolipases A2/farmacologia , Coagulação Sanguínea , Plaquetas , Venenos de Víboras/farmacologiaRESUMO
Secreted phospholipases A2 are snake-venom proteins with many biological activities, notably anti-tumor activity. Phospholipases from the same snake type but different geographical locations have shown similar biochemical and biological activities with minor differences in protein sequences. Thus, the discovery of a new phospholipase A2 with unique characteristics identified in a previously studied venom could suggest the origins of these differences. Here, a new Group II secreted phospholipase A2 (Cc-PLA2-II) from the snake venom of Saudi Cerastes cerastes gasperetti was isolated and characterized. The purified enzyme had a molecular weight of 13.945 kDa and showed high specific activity on emulsified phosphatidylcholine of 1560 U/mg at pH 9.5 and 50 °C with strict calcium dependence. Interestingly, stability in extreme pH and high temperatures was observed after enzyme incubation at several pH levels and temperatures. Moreover, a significant dose-dependent cytotoxic anti-tumor effect against six human cancer cell lines was observed with concentrations of Cc-PLA2 ranging from 2.5 to 8 µM. No cytotoxic effect on normal human umbilical-vein endothelial cells was noted. These results suggest that Cc-PLA2-II potentially has angiogenic activity of besides cytotoxicity as part of its anti-tumor mechanism. This study justifies the inclusion of this enzyme in many applications for anticancer drug development.
Assuntos
Antineoplásicos , Viperidae , Animais , Humanos , Fosfolipases A2 do Grupo II , Arábia Saudita , Fosfolipases A2/farmacologia , Fosfolipases A2/química , Fosfolipases , Venenos de Víboras/farmacologia , Venenos de Víboras/química , Antineoplásicos/farmacologiaRESUMO
Snake venoms have evolved primarily to immobilize and kill prey, and consequently, they contain some of the most potent natural toxins. Part of that armory is a range of hemotoxic components that affect every area of hemostasis, which we have harnessed to great effect in the study and diagnosis of hemostatic disorders. The most widely used are those that affect coagulation, such as thrombin-like enzymes unaffected by heparin and direct thrombin inhibitors, which can help confirm or dispute their presence in plasma. The liquid gold of coagulation activators is Russell's viper venom, since it contains activators of factor X and factor V. It is used in a range of clotting-based assays, such as assessment of factor X and factor V deficiencies, protein C and protein S deficiencies, activated protein C resistance, and probably the most important test for lupus anticoagulants, the dilute Russell's viper venom time. Activators of prothrombin, such as oscutarin C from Coastal Taipan venom and ecarin from saw-scaled viper venom, are employed in prothrombin activity assays and lupus anticoagulant detection, and ecarin has a valuable role in quantitative assays of direct thrombin inhibitors. Snake venoms affecting primary hemostasis include botrocetin from the jararaca, which can be used to assay von Willebrand factor activity, and convulxin from the cascavel, which can be used to detect deficiency of the platelet collagen receptor, glycoprotein VI. This article takes the reader to every area of the diagnostic hemostasis laboratory to appreciate the myriad applications of snake venoms available in diagnostic practice.
Assuntos
Hemostasia , Trombose , Testes de Coagulação Sanguínea , Humanos , Inibidor de Coagulação do Lúpus , Venenos de Serpentes/farmacologia , Trombose/diagnóstico , Venenos de Víboras/farmacologiaRESUMO
Venom pathology is not restricted to the direct toxic effects of venom. Immunoinflammatory alteration as the etiology of snake venom-induced acute kidney injury (SAKI) is a less trodden path toward the development of alternative therapeutic approach. In the present study, we have associated the crest of renal damage stage to the immunological alteration, as reflected in thymic and peripheral T cell polarization in the murine model of SAKI. Renal injury in mice was confirmed from significant dysuresis and adversely altered biochemical renal markers. Histopathological alterations, as revealed by marked tubular and glomerular damage, reaffirmed kidney injury. SAKI is accompanied by significant inflammatory changes as indicated by neutrophilic leucocytosis, increased neutrophil to lymphocyte ratio and plasma CRP levels. Thymic immunophenotyping revealed significantly increased CD8+ cytotoxic T cell, and CD25+ both single positive population (p = .017-0.010) and CD44-CD25+ double negative population (DN3) (p = .002) accompanied by an insignificantly reduced CD4+ helper T cells (p = .451). Peripheral immunophenotyping revealed similar pattern as indicated by reduced helper T cells (p = .002) associated with significantly elevated cytotoxic T cells (p = .009) and CD25+ subset of both helper (p = .002) and cytotoxic (p = .024) T cells. The IL-10+ subset of both CD25+ and CD25- T cells were also found to be significantly elevated in the SAKI group (p ≤ 0.020) suggesting an immunosuppressive phenotype in SAKI. It can be concluded that T cells responds to venom-induced renal injury particularly through IL-10+ reparative phenotypes which are known for their immunosuppressive and anti-inflammatory activity.
Assuntos
Injúria Renal Aguda , Daboia , Injúria Renal Aguda/induzido quimicamente , Animais , Biomarcadores , Interleucina-10 , Camundongos , Modelos Teóricos , Venenos de Víboras/farmacologiaRESUMO
The COVID-19 pandemic caused by SARS-CoV-2 requires new treatments both to alleviate the symptoms and to prevent the spread of this disease. Previous studies demonstrated good antiviral and virucidal activity of phospholipase A2s (PLA2s) from snake venoms against viruses from different families but there was no data for coronaviruses. Here we show that PLA2s from snake venoms protect Vero E6 cells against SARS-CoV-2 cytopathic effects. PLA2s showed low cytotoxicity to Vero E6 cells with some activity at micromolar concentrations, but strong antiviral activity at nanomolar concentrations. Dimeric PLA2 from the viper Vipera nikolskii and its subunits manifested especially potent virucidal effects, which were related to their phospholipolytic activity, and inhibited cell-cell fusion mediated by the SARS-CoV-2 spike glycoprotein. Moreover, PLA2s interfered with binding both of an antibody against ACE2 and of the receptor-binding domain of the glycoprotein S to 293T/ACE2 cells. This is the first demonstration of a detrimental effect of PLA2s on ß-coronaviruses. Thus, snake PLA2s are promising for the development of antiviral drugs that target the viral envelope, and could also prove to be useful tools to study the interaction of viruses with host cells.
Assuntos
Fosfolipases A2/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Venenos de Víboras/farmacologia , Ligação Viral/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Afinidade de Anticorpos/efeitos dos fármacos , Antivirais/farmacologia , Fusão Celular , Linhagem Celular , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Células HEK293 , Humanos , Modelos Moleculares , Domínios Proteicos/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Células Vero , Venenos de Víboras/enzimologia , Tratamento Farmacológico da COVID-19RESUMO
Integrins are a family of 24 adhesion receptors which are both widely-expressed and important in many pathophysiological cellular processes, from embryonic development to cancer metastasis. Hence, integrin inhibitors are valuable research tools which may have promising therapeutic uses. Here, we focus on the four collagen-binding integrins α1ß1, α2ß1, α10ß1 and α11ß1. TC-I-15 is a small molecule inhibitor of α2ß1 that inhibits platelet adhesion to collagen and thrombus deposition, and obtustatin is an α1ß1-specific disintegrin that inhibits angiogenesis. Both inhibitors were applied in cellular adhesion studies, using synthetic collagen peptide coatings with selective affinity for the different collagen-binding integrins and testing the adhesion of C2C12 cells transfected with each. Obtustatin was found to be specific for α1ß1, as described, whereas TC-I-15 is shown to be non-specific, since it inhibits both α1ß1 and α11ß1 as well as α2ß1. TC-I-15 was 100-fold more potent against α2ß1 binding to a lower-affinity collagen peptide, suggestive of a competitive mechanism. These results caution against the use of integrin inhibitors in a therapeutic or research setting without testing for cross-reactivity.
Assuntos
Inibidores da Angiogênese/farmacologia , Colágeno/metabolismo , Integrina alfa2beta1/antagonistas & inibidores , Integrina alfa2beta1/metabolismo , Venenos de Víboras/metabolismo , Venenos de Víboras/farmacologia , Inibidores da Angiogênese/química , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Camundongos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologiaRESUMO
Venoms are a rich source of potential lead compounds for drug discovery, and descriptive studies of venom form the first phase of the biodiscovery process. In this study, we investigated the pharmacological potential of crude Pseudocerastes and Eristicophis snake venoms in haematological disorders and cancer treatment. We assessed their antithrombotic potential using fibrinogen thromboelastography, fibrinogen gels with and without protease inhibitors, and colourimetric fibrinolysis assays. These assays indicated that the anticoagulant properties of the venoms are likely induced by the hydrolysis of phospholipids and by selective fibrinogenolysis. Furthermore, while most fibrinogenolysis occurred by the direct activity of snake venom metalloproteases and serine proteases, modest evidence indicated that fibrinogenolytic activity may also be mediated by selective venom phospholipases and an inhibitory venom-derived serine protease. We also found that the Pseudocerastes venoms significantly reduced the viability of human melanoma (MM96L) cells by more than 80%, while it had almost no effect on the healthy neonatal foreskin fibroblasts (NFF) as determined by viability assays. The bioactive properties of these venoms suggest that they contain a number of toxins suitable for downstream pharmacological development as candidates for antithrombotic or anticancer agents.
Assuntos
Antineoplásicos/farmacologia , Fibrinolíticos/farmacologia , Venenos de Serpentes/farmacologia , Venenos de Víboras/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fibrinólise/efeitos dos fármacos , Humanos , Inibidores de Serina Proteinase/farmacologiaRESUMO
Cervical cancer is the fourth most common cancer worldwide in women. Apoptosis reactivation has become the main strategy for decreasing cancer proliferation. There is a need to extend the search for new drugs to implement more effective and less toxic strategies for cervical cancer treatment. Research has been carried out to find new drugs that have minimal side effects and that focus on the tumor microenvironment, particularly in the induction of cellular apoptosis and cell migration and the inhibition of angiogenesis. Potent toxins from snake venoms have shown potential as sources for the synthesis of new drugs with such characteristics. The present work aimed to describe cervical cancer characteristics, associated risk factors, current treatments and to highlight the effects of toxins isolated from the venom of snakes of the Viperidae family on cervical cancer cell lines.
Assuntos
Venenos de Serpentes/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Venenos de Víboras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Neovascularização Patológica , Toxinas Biológicas , Microambiente Tumoral/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismoRESUMO
The objective was to screen 10 snake venoms for their efficacy to control growth and mycotoxin production by important mycotoxigenic fungi including Aspergillus flavus, Aspergillus westerdijkiae, Penicillium verrucosum, Fusarium graminearum and F. langsethiae. The Bioscreen C rapid assay system was used. The venoms from the Viperidae snake family delayed growth of some of the test fungi, especially F. graminearum and F. langsethiae and sometimes A. flavus. Some were also able to reduce mycotoxin production. The two most potent crude snake venoms (Naja nigricollis and N. siamensis; 41 and 43 fractions, respectively) were further fractionated and 83/84 of these fractions were able to reduce mycotoxin production by >90% in two of the mycotoxigenic fungi examined. This study suggests that there may be significant potential for the identification of novel fungistatic/fungicidal bioactive compounds as preservatives of raw and processed food commodities post-harvest from such snake venoms.
Assuntos
Aspergillus flavus/metabolismo , Aspergillus/metabolismo , Fusarium/metabolismo , Micotoxinas/biossíntese , Penicillium/metabolismo , Venenos de Víboras/farmacologia , Animais , Antifúngicos/farmacologia , Estudo de Prova de Conceito , Viperidae/metabolismoRESUMO
The objective of this study was to evaluate the genotoxic and mutagenic effects of the toxins present in Lachesis muta muta's venom on human peripheral blood leukocytes and the protective potential of ascorbic acid on DNA fragmentation. The venom of L. muta muta was incubated in different concentrations (1, 2.5, 5, 7.5, 10, 15, 20, 30, 40, 50, 60, and 120 µg/mL) with human blood to evaluate DNA fragmentation using the comet, agarose gel electrophoresis, and micronucleus assays. In these concentrations evaluated, the venom of L. muta muta induced genotoxicity (comet assay and agarose gel electrophoresis) and mutagenicity (micronucleus test), but they were not cytotoxic, as they did not change the rate of cell proliferation after cytokinesis blockade with cytochalasin B. The ascorbic acid significantly inhibited the genotoxicity induced by L. muta muta venom in the proportions evaluated (1:0.1 and 1:0.5, venom/ascorbic acid - w/w). Thus, future studies are needed to elucidate the protective mechanisms of ascorbic acid on the genotoxic effects induced by toxins present in snake venoms.
Assuntos
Ácido Ascórbico/farmacologia , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Leucócitos/metabolismo , Venenos de Víboras/farmacologia , Viperidae , Animais , HumanosRESUMO
Echis carinatus envenomation leads to severe tissue necrosis at the bitten site by releasing DNA from immune cells that blocks the blood flow. An earlier report has shown that exogenous DNase 1 offers protection against such severe local tissue necrosis. Tricosanthus tricuspidata is a medicinal plant and the paste prepared from its leaves has been used extensively for the treatment of snakebite-induced tissue necrosis. Most studies including reports from our laboratory focused on plant secondary metabolite as therapeutic molecules against snakebite envenomation. However, the involvement of hydrolytic enzymes including DNase in treating snake venom-induced tissue necrosis has not been addressed. Several folk medicinal plants used against snakebite treatment showed the presence of DNase activity and found to be rich in T. tricuspidata. Further, purified T. tricuspidata DNase showed a single sharp peak in reversed-phase high-performance liquid chromatography (RP-HPLC) with an apparent molecular mass of 17 kDa. T. tricuspidata DNase exhibited potent DNA degrading activity performed using agarose gel electrophoresis, spectrophotometric assay, and DNA zymography. In addition, purified DNase from T. tricuspidata was able to neutralize E. carinatus venom-induced mouse tail tissue necrosis and normalized elevated serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels 30 minutes post venom injection. T. tricuspidata DNase was also able to reverse E. carinatus venom-induced histopathological changes and collagen depletion in mice tail tissue. All these observed pharmacological actions of T. tricuspidata DNase were inhibited by sodium fluoride (NaF). This study provides scientific validation of the traditional use of T. tricuspidata leaf paste in the healing of snakebite-induced tissue necrosis and might be exploited to treat snake venom-induced local toxicity.
Assuntos
Cucurbitaceae/enzimologia , Desoxirribonuclease I/uso terapêutico , Extratos Vegetais/uso terapêutico , Folhas de Planta/enzimologia , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Víboras/farmacologia , Viperidae/metabolismo , Animais , Colágeno Tipo I/metabolismo , Creatina Quinase/sangue , Desoxirribonuclease I/antagonistas & inibidores , Feminino , L-Lactato Desidrogenase/sangue , Masculino , Camundongos , Necrose/induzido quimicamente , Necrose/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Mordeduras de Serpentes/sangue , Fluoreto de Sódio/farmacologiaRESUMO
Obtustatin, isolated from the Levantine Viper snake venom (Macrovipera lebetina obtusa -MLO), is the shortest known monomeric disintegrin shown to specifically inhibit the binding of the α1ß1 integrin to collagen IV. Its oncostatic effect is due to the inhibition of angiogenesis, likely through α1ß1 integrin inhibition in endothelial cells. To explore the therapeutic potential of obtustatin, we studied its effect in S-180 sarcoma-bearing mice model in vivo as well as in human dermal microvascular endothelial cells (HMVEC-D) in vitro, and tested anti-angiogenic activity in vivo using the chick embryo chorioallantoic membrane assay (CAM assay). Our in vivo results show that obtustatin inhibits tumour growth by 33%. The expression of vascular endothelial growth factor (VEGF) increased after treatment with obtustatin, but the level of expression of caspase 8 did not change. In addition, our results demonstrate that obtustatin inhibits FGF2-induced angiogenesis in the CAM assay. Our in vitro results show that obtustatin does not exhibit cytotoxic activity in HMVEC-D cells in comparison to in vivo results. Thus, our findings disclose that obtustatin might be a potential candidate for the treatment of sarcoma in vivo with low toxicity.
Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Sarcoma Experimental/tratamento farmacológico , Venenos de Víboras/farmacologia , Animais , Apoptose , Proliferação de Células , Embrião de Galinha , Membrana Corioalantoide , Integrina alfa1beta1/antagonistas & inibidores , Camundongos , Neovascularização Patológica/patologia , Sarcoma Experimental/irrigação sanguínea , Sarcoma Experimental/patologia , Células Tumorais CultivadasRESUMO
Lupus anticoagulants (LAs) are a laboratory representation of the clinical syndrome of antiphospholipid syndrome (APS), and can also arise in other pathological states. Laboratory testing for LA is complex and three separate recent guidelines have been published. One test, the Russell viper venom time (RVVT), is the mandated laboratory test for inclusion in LA identification/exclusion in all three guidance documents. This is because the the RVVT is recognized to have great sensitivity for LA, with this generally recognized to be greater than that of most other LA screening assays. However, the RVVT is also very sensitive to the presence of many anticoagulant drugs, which diminishes its specificity for LA. Various strategies can be used to improve LA specificity and reduce anticoagulant assay interference.
Assuntos
Inibidor de Coagulação do Lúpus/sangue , Tempo de Protrombina , Animais , Anticoagulantes/farmacologia , Artefatos , Coagulação Sanguínea/efeitos dos fármacos , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Tempo de Tromboplastina Parcial , Guias de Prática Clínica como Assunto , Tempo de Protrombina/métodos , Daboia , Sensibilidade e Especificidade , Venenos de Víboras/farmacologiaRESUMO
The spleen tyrosine kinase (Syk) is essential for immunoreceptor tyrosine-based activation motif (ITAM)-dependent platelet activation, and it is stimulated by Src-family kinase (SFK)-/Syk-mediated phosphorylation of Y352 (interdomain-B) and Y525/526 (kinase domain). Additional sites for Syk phosphorylation and protein interactions are known but remain elusive. Since Syk S297 phosphorylation (interdomain-B) was detected in platelets, we hypothesized that this phosphorylation site regulates Syk activity via protein kinase C (PKC)-and cyclic adenosine monophosphate (cAMP)-dependent pathways. ADP, the GPVI-agonist convulxin, and the GPIbα-agonist echicetin beads (EB) were used to stimulate human platelets with/without effectors. Platelet aggregation and intracellular messengers were analyzed, along with phosphoproteins, by immunoblotting using phosphosite-specific antibodies or phos-tags. ADP, convulxin, and EB upregulated Syk S297 phosphorylation, which was inhibited by iloprost (cAMP pathway). Convulxin-stimulated Syk S297 phosphorylation was stoichiometric, transient, abolished by the PKC inhibitor GF109203X, and mimicked by the PKC activator PDBu. Convulxin/EB stimulated Syk S297, Y352, and Y525/526 phosphorylation, which was inhibited by SFK and Syk inhibitors. GFX and iloprost inhibited convulxin/EB-induced Syk S297 phosphorylation but enhanced Syk tyrosine (Y352/Y525/526) and substrate (linker adaptor for T cells (LAT), phospholipase γ2 (PLC γ2)) phosphorylation. GFX enhanced convulxin/EB-increases of inositol monophosphate/Ca2+. ITAM-activated Syk stimulates PKC-dependent Syk S297 phosphorylation, which is reduced by SFK/Syk/PKC inhibition and cAMP. Inhibition of Syk S297 phosphorylation coincides with enhanced Syk activation, suggesting that S297 phosphorylation represents a mechanism for feedback inhibition in human platelets.
Assuntos
Plaquetas/metabolismo , Proteína Quinase C/metabolismo , Quinase Syk/metabolismo , Difosfato de Adenosina/farmacologia , Plaquetas/citologia , Cálcio/metabolismo , Venenos de Crotalídeos/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Lectinas Tipo C , Maleimidas/farmacologia , Fosfolipase C gama/metabolismo , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/química , Quinase Syk/antagonistas & inibidores , Venenos de Víboras/farmacologiaRESUMO
Four dimeric disintegrins were isolated from the venom of the steppe viper V. ursinii using liquid chromatography. Disintegrins prevented adhesion of MCF7 cells to fibronectin, which indicates their interaction with integrin receptors of the αVß1 type. According to mass spectrometry data, the molar masses of disintegrins are about 14 kDa. The method of peptide mapping established the structure of a new heterodimeric disintegrin weighing 13 995.5 Da and shows that it belongs to the class of RGD/KGD-containing disintegrins.
Assuntos
Desintegrinas/química , Multimerização Proteica , Proteínas de Répteis/química , Venenos de Víboras/química , Viperidae , Animais , Desintegrinas/farmacologia , Humanos , Células MCF-7 , Receptores de Vitronectina/metabolismo , Proteínas de Répteis/farmacologia , Venenos de Víboras/farmacologiaRESUMO
Platelets play a key role in the physiological hemostasis or pathological process of thrombosis. Rhodocytin, an agonist of the C-type lectin-like receptor-2 (CLEC-2), elicits powerful platelet activation signals in conjunction with Src family kinases (SFKs), spleen tyrosine kinase (Syk), and phospholipase γ2 (PLCγ2). Previous reports have shown that rhodocytin-induced platelet aggregation depends on secondary mediators such as thromboxane A2 (TxA2) and ADP, which are agonists for G-protein-coupled receptors (GPCRs) on platelets. How the secondary mediators regulate CLEC-2-mediated platelet activation in terms of signaling is not clearly defined. In this study, we report that CLEC-2-induced Syk and PLCγ2 phosphorylation is potentiated by TxA2 and that TxA2 plays a critical role in the most proximal event of CLEC-2 signaling, i.e. the CLEC-2 receptor tyrosine phosphorylation. We show that the activation of other GPCRs, such as the ADP receptors and protease-activated receptors, can also potentiate CLEC-2 signaling. By using the specific Gq inhibitor, UBO-QIC, or Gq knock-out murine platelets, we demonstrate that Gq signaling, but not other G-proteins, is essential for GPCR-induced potentiation of Syk phosphorylation downstream of CLEC-2. We further elucidated the signaling downstream of Gq and identified an important role for the PLCß-PKCα pathway, possibly regulating activation of SFKs, which are crucial for initiation of CLEC-2 signaling. Together, these results provide evidence for novel Gq-PLCß-PKCα-mediated regulation of proximal CLEC-2 signaling by Gq-coupled receptors.
Assuntos
Plaquetas/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Lectinas Tipo C/agonistas , Modelos Biológicos , Agregação Plaquetária/efeitos dos fármacos , Transdução de Sinais , Venenos de Víboras/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Coagulantes/farmacologia , Depsipeptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Lectinas Tipo C/metabolismo , Camundongos Knockout , Fosfolipase C gama/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Transdução de Sinais/efeitos dos fármacos , Organismos Livres de Patógenos Específicos , Quinase Syk/metabolismo , Tromboxano A2/agonistas , Tromboxano A2/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismoRESUMO
Viper venom contains antibacterial and cytotoxic components. The aim of this study was to identify and evaluate the antimicrobial and cytotoxic properties of the crude venom of Vipera latifii (V. latifii). Lyophilized venom of V. latifii was quantified by Bradford method and its antibacterial activity (6.25-400 µg/ml) was assessed using the MTT, MIC, Disc diffusion, and Well diffusion assays. Also, its cytotoxic activity was investigated using MTT reduction, Neutral uptake, and Comet assay on human liver cancer (HepG2) cell line. Crude venom showed antibacterial effects against Bacillus subtilis and Staphylococcus aureus, but was not effective on Escherichia coli. Also, the crude venom showed apoptotic and necrotic effects on human liver cancer cells. The venom of V. latifii can inhibit the growth of bacteria and cancer cells. These findings suggest that this may be a potential source of molecules with antibacterial and anticancer characteristics.
Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Venenos de Víboras/farmacologia , Animais , Bacillus subtilis/efeitos dos fármacos , Linhagem Celular Tumoral , Escherichia coli/efeitos dos fármacos , Células Hep G2 , Humanos , Irã (Geográfico) , Serpentes/metabolismo , Staphylococcus aureus/efeitos dos fármacosRESUMO
Complex regional pain syndrome (CRPS) is a disorder that involves abnormal inflammation and nerve dysfunction frequently resistant to a broad range of treatments. Peripheral nerve stimulation with electroacupuncture (EA) has been widely used in different clinical conditions to control pain and inflammation; however, the use of EA in the treatment of CRPS is under investigation. In this study, we explore the effects of EA on hyperalgesia and edema induced in an animal model of chronic post-ischemia pain (CPIP model) and the possible involvement of endothelin receptor type B (ETB) in this effect. Female Swiss mice were subjected to 3 h hind paw ischemia/reperfusion CPIP model. EA treatment produced time-dependent inhibition of mechanical and cold hyperalgesia, as well as edema in CPIP mice. Peripheral administration (i.pl.) of BQ-788 (10 nmol), an ETB antagonist, prevented EA-induced antihyperalgesia while intrathecal administration prolonged EA's effect. Additionally, peripheral pre-treatment with sarafotoxin (SRTX S6c, 30 pmol, ETB agonist) increased EA anti-hyperalgesic effect. Furthermore, the expression of peripheral ETB receptors was increased after EA treatments, as measured by western blot. These results may suggest that EA's analgesic effect is synergic with ETB receptor activation in the periphery, as well as central (spinal cord) ETB receptor blockade. These data support the use of EA as a nonpharmacological approach for the management of CRPS-I, in an adjuvant manner to ETB receptor targeting drugs.
Assuntos
Síndromes da Dor Regional Complexa/terapia , Eletroacupuntura/métodos , Hiperalgesia/terapia , Receptor de Endotelina B/metabolismo , Animais , Síndromes da Dor Regional Complexa/metabolismo , Antagonistas do Receptor de Endotelina B/administração & dosagem , Antagonistas do Receptor de Endotelina B/farmacologia , Feminino , Hiperalgesia/metabolismo , Camundongos , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacologia , Nervos Periféricos/efeitos dos fármacos , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Receptor de Endotelina B/agonistas , Medula Espinal/efeitos dos fármacos , Venenos de Víboras/administração & dosagem , Venenos de Víboras/farmacologiaRESUMO
About one-third of patients with type 1 diabetes develops kidney disease. The mechanism is largely unknown, but intrarenal hypoxia has been proposed as a unifying mechanism for chronic kidney disease, including diabetic nephropathy. The endothelin system has recently been demonstrated to regulate oxygen availability in the diabetic kidney via a pathway involving endothelin type A receptors (ETA-R). These receptors mainly mediate vasoconstriction and tubular sodium retention, and inhibition of ETA-R improves intrarenal oxygenation in the diabetic kidney. Endothelin type B receptors (ETB-R) can induce vasodilation of the renal vasculature and also regulate tubular sodium handling. However, the role of ETB-R in kidney oxygen homeostasis is unknown. The effects of acute intrarenal ETB-R activation (sarafotoxin 6c for 30-40 min; 0.78 pmol/h directly into the renal artery) on kidney function and oxygen metabolism were investigated in normoglycemic controls and insulinopenic male Sprague-Dawley rats administered streptozotocin (55 mg/kg) 2 wk before the acute experiments. Intrarenal activation of ETB-R improved oxygenation in the hypoxic diabetic kidney. However, the effects on diabetes-induced increased kidney oxygen consumption could not explain the improved oxygenation. Rather, the improved kidney oxygenation was due to hemodynamic effects increasing oxygen delivery without increasing glomerular filtration or tubular sodium load. In conclusion, increased ETB-R signaling in the diabetic kidney improves intrarenal tissue oxygenation due to increased oxygen delivery secondary to increased renal blood flow.
Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Hemodinâmica/efeitos dos fármacos , Rim/efeitos dos fármacos , Oxigênio/sangue , Receptor de Endotelina B/agonistas , Circulação Renal/efeitos dos fármacos , Venenos de Víboras/farmacologia , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/fisiopatologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/fisiopatologia , Rim/metabolismo , Rim/fisiopatologia , Masculino , Ratos Sprague-Dawley , Receptor de Endotelina B/metabolismo , Transdução de Sinais/efeitos dos fármacos , EstreptozocinaRESUMO
Angiogenesis is a cause of visual impairment and blindness in the wet form of age-related macular degeneration and in ischemic retinopathies. Current therapies include use of anti-VEGF agents to reduce choroidal neovascularization (CNV) and edema. These treatments are effective in most cases, but spontaneous or acquired resistance to anti-VEGF and possible adverse effects of long-term VEGF inhibition in the retina and choroid highlight a need for additional alternative therapies. Integrins αvß3 and αvß5, which regulate endothelial cell proliferation and stabilization, have been implicated in ocular angiogenesis. Lebecetin (LCT) is a 30-kDa heterodimeric C-type lectin that is isolated from Macrovipera lebetina venom and interacts with α5ß1- and αv-containing integrins. We previously showed that LCT inhibits human brain microvascular endothelial cell adhesion, migration, proliferation, and tubulogenesis. To evaluate the inhibitory effect of LCT on ocular angiogenesis, we cultured aortic and choroidal explants in the presence of LCT and analyzed the effect of LCT on CNV in the mouse CNV model and on retinal neovascularization in the oxygen-induced retinopathy model. Our data demonstrate that a single injection of LCT efficiently reduced CNV and retinal neovascularization in these models.-Montassar, F., Darche, M., Blaizot, A., Augustin, S., Conart, J.-B., Millet, A., Elayeb, M., Sahel, J.-A., Réaux-Le Goazigo, A., Sennlaub, F., Marrakchi, N., Messadi, E., Guillonneau, X. Lebecetin, a C-type lectin, inhibits choroidal and retinal neovascularization.