Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.263
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 630(8018): 961-967, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740055

RESUMO

Although eukaryotic Argonautes have a pivotal role in post-transcriptional gene regulation through nucleic acid cleavage, some short prokaryotic Argonaute variants (pAgos) rely on auxiliary nuclease factors for efficient foreign DNA degradation1. Here we reveal the activation pathway of the DNA defence module DdmDE system, which rapidly eliminates small, multicopy plasmids from the Vibrio cholerae seventh pandemic strain (7PET)2. Through a combination of cryo-electron microscopy, biochemistry and in vivo plasmid clearance assays, we demonstrate that DdmE is a catalytically inactive, DNA-guided, DNA-targeting pAgo with a distinctive insertion domain. We observe that the helicase-nuclease DdmD transitions from an autoinhibited, dimeric complex to a monomeric state upon loading of single-stranded DNA targets. Furthermore, the complete structure of the DdmDE-guide-target handover complex provides a comprehensive view into how DNA recognition triggers processive plasmid destruction. Our work establishes a mechanistic foundation for how pAgos utilize ancillary factors to achieve plasmid clearance, and provides insights into anti-plasmid immunity in bacteria.


Assuntos
Proteínas Argonautas , Proteínas de Bactérias , Plasmídeos , Vibrio cholerae , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Proteínas Argonautas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Desoxirribonucleases/química , Desoxirribonucleases/metabolismo , Desoxirribonucleases/ultraestrutura , DNA Helicases/química , DNA Helicases/metabolismo , DNA Helicases/ultraestrutura , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Modelos Moleculares , Plasmídeos/genética , Plasmídeos/imunologia , Plasmídeos/metabolismo , Domínios Proteicos , Multimerização Proteica , Vibrio cholerae/genética , Vibrio cholerae/imunologia , Vibrio cholerae/patogenicidade
2.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558237

RESUMO

The O1 serogroup of Vibrio cholerae causes pandemic cholera and is divided into the Ogawa and Inaba serotypes. The O-antigen is V. cholerae's immunodominant antigen, and the two serotypes, which differ by the presence or absence of a terminally methylated O-antigen, likely influence development of immunity to cholera and oral cholera vaccines (OCVs). However, there is no consensus regarding the relative immunological potency of each serotype, in part because previous studies relied on genetically heterogeneous strains. Here, we engineered matched serotype variants of a live OCV candidate, HaitiV, and used a germfree mouse model to evaluate the immunogenicity and protective efficacy of each vaccine serotype. By combining vibriocidal antibody quantification with single- and mixed-strain infection assays, we found that all three HaitiV variants-InabaV, OgawaV, and HikoV (bivalent Inaba/Ogawa)-were immunogenic and protective. None of the vaccine serotypes were superior across both of these vaccine metrics, suggesting that the impact of O1-serotype variation in OCV design, although detectable, is subtle. However, all three live vaccines significantly outperformed formalin-killed HikoV, supporting the idea that live OCV usage will bolster current cholera control practices. The potency of OCVs was found to be challenge strain-dependent, emphasizing the importance of appropriate strain selection for cholera challenge studies. Our findings and experimental approaches will be valuable for guiding the development of live OCVs and oral vaccines for additional pathogens.


Assuntos
Vacinas contra Cólera/imunologia , Imunogenicidade da Vacina , Sorogrupo , Vacinas Atenuadas/imunologia , Vibrio cholerae/imunologia , Administração Oral , Animais , Vacinas contra Cólera/administração & dosagem , Vacinas contra Cólera/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vibrio cholerae/genética
3.
Nucleic Acids Res ; 48(1): 249-263, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31667508

RESUMO

Phage-inducible chromosomal island-like elements (PLEs) are bacteriophage satellites found in Vibrio cholerae. PLEs parasitize the lytic phage ICP1, excising from the bacterial chromosome, replicating, and mobilizing to new host cells following cell lysis. PLEs protect their host cell populations by completely restricting the production of ICP1 progeny. Previously, it was found that ICP1 replication was reduced during PLE(+) infection. Despite robust replication of the PLE genome, relatively few transducing units are produced. We investigated if PLE DNA replication itself is antagonistic to ICP1 replication. Here we identify key constituents of PLE replication and assess their role in interference of ICP1. PLE encodes a RepA_N initiation factor that is sufficient to drive replication from the PLE origin of replication during ICP1 infection. In contrast to previously characterized bacteriophage satellites, expression of the PLE initiation factor was not sufficient for PLE replication in the absence of phage. Replication of PLE was necessary for interference of ICP1 DNA replication, but replication of a minimalized PLE replicon was not sufficient for ICP1 DNA replication interference. Despite restoration of ICP1 DNA replication, non-replicating PLE remained broadly inhibitory against ICP1. These results suggest that PLE DNA replication is one of multiple mechanisms contributing to ICP1 restriction.


Assuntos
Bacteriófagos/genética , DNA Helicases/genética , DNA Bacteriano/genética , Vibrio cholerae/genética , Replicação Viral/genética , Bacteriófagos/metabolismo , Cromossomos Bacterianos/química , Cromossomos Bacterianos/imunologia , Cromossomos Bacterianos/virologia , DNA Helicases/imunologia , Replicação do DNA , DNA Bacteriano/imunologia , Lisogenia/genética , Origem de Replicação , Vibrio cholerae/imunologia , Vibrio cholerae/virologia
4.
J Infect Dis ; 224(12 Suppl 2): S732-S737, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34668561

RESUMO

A correlate of protection (CoP) is a measured adaptive immune response to vaccination or infection that is associated with protection against disease. However, the degree to which a CoP can serve as a surrogate end point for vaccine efficacy should depend on the robustness of this association. While cholera toxin is a dominant target of the human antibody response to Vibrio cholerae infection, antitoxin responses are not associated with long-term immunity, and are not effective CoPs for cholera. Instead, protection appears to be mediated by functional antibodies that target the O-polysaccharide coated V. cholerae outer membrane. Vibriocidal antibodies, which are complement-dependent bactericidal antibodies, remain the most accepted CoP for cholera and are used as surrogate end points in some vaccine studies. However, the association between vibriocidal antibody titers and immunity is not absolute, and they are unlikely to reflect a mechanistic correlate of protection against cholera.


Assuntos
Imunidade Adaptativa , Vacinas contra Cólera , Cólera/prevenção & controle , Eficácia de Vacinas , Vibrio cholerae/imunologia , Anticorpos Antibacterianos/imunologia , Toxina da Cólera/imunologia , Vacinas contra Cólera/efeitos adversos , Vacinas contra Cólera/imunologia , Humanos , Vibrio cholerae O1/imunologia
5.
J Infect Dis ; 224(12 Suppl 2): S742-S748, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34453544

RESUMO

The rapid spread of the seventh cholera pandemic over Asia in the 1960s led to several large field studies that revealed that the traditional injectable cholera vaccines had poor efficacy, which led the World Health Organization (WHO) in the 1970s to stop recommending cholera vaccination. At the same time, it stimulated research that has led to the development of the effective orally administered cholera vaccines (OCVs) that today are a cornerstone in WHO's strategy for Ending Cholera-A Global Roadmap to 2030. The first effective OCV, Dukoral, containing a mixture of inactivated Vibrio cholerae bacteria and cholera toxin B subunit, was licensed in 1991 and is, together with 2 similar inactivated whole-cell OCVs, Shanchol and Euvichol, currently WHO prequalified and recommended OCVs. This brief review is a personal account of the modern history of the development of these now universally recognized effective tools.


Assuntos
Vacinas contra Cólera/história , Cólera/prevenção & controle , Mucosa/imunologia , Vibrio cholerae/imunologia , Administração Oral , História do Século XX , Humanos , Imunidade Coletiva , Vacinas de Produtos Inativados
6.
Infect Immun ; 89(9): e0021721, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34228490

RESUMO

Cholera is a diarrheal disease caused by Vibrio cholerae that continues to be a major public health concern in populations without access to safe water. IgG- and IgA-secreting memory B cells (MBC) targeting the V. cholerae O-specific polysaccharide (OSP) correlate with protection from infection in persons exposed to V. cholerae and may be a major determinant of long-term protection against cholera. Shanchol, a widely used oral cholera vaccine (OCV), stimulates OSP MBC responses in only some people after vaccination, and the gut microbiota is a possible determinant of variable immune responses observed after OCV. Using 16S rRNA sequencing of feces from the time of vaccination, we compared the gut microbiota among adults with and without MBC responses to OCV. Gut microbial diversity measures were not associated with MBC isotype or OSP-specific responses, but individuals with a higher abundance of Clostridiales and lower abundance of Enterobacterales were more likely to develop an MBC response. We applied protein-normalized fecal supernatants of high and low MBC responders to THP-1-derived human macrophages to investigate the effect of microbial factors at the time of vaccination. Feces from individuals with higher MBC responses induced significantly different IL-1ß and IL-6 levels than individuals with lower responses, indicating that the gut microbiota at the time of vaccination may "prime" the mucosal immune response to vaccine antigens. Our results suggest the gut microbiota could impact immune responses to OCVs, and further study of microbial metabolites as potential vaccine adjuvants is warranted.


Assuntos
Linfócitos B/imunologia , Vacinas contra Cólera/imunologia , Cólera/imunologia , Cólera/microbiologia , Microbioma Gastrointestinal , Memória Imunológica , Vibrio cholerae/imunologia , Administração Oral , Adolescente , Adulto , Especificidade de Anticorpos/imunologia , Linfócitos B/metabolismo , Cólera/prevenção & controle , Vacinas contra Cólera/administração & dosagem , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Interações Microbianas , Vacinação , Adulto Jovem
7.
Infect Immun ; 89(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33199355

RESUMO

Cholera toxin (CT) is an AB5 protein toxin that activates the stimulatory alpha subunit of the heterotrimeric G protein (Gsα) through ADP-ribosylation. Activation of Gsα produces a cytopathic effect by stimulating adenylate cyclase and the production of cAMP. To reach its cytosolic Gsα target, CT binds to the plasma membrane of a host cell and travels by vesicle carriers to the endoplasmic reticulum (ER). The catalytic CTA1 subunit then exploits the quality control mechanism of ER-associated degradation to move from the ER to the cytosol. ER-associated degradation is functionally linked to another quality control system, the unfolded protein response (UPR). However, the role of the UPR in cholera intoxication is unclear. We report here that CT triggers the UPR after 4 h of toxin exposure. A functional toxin was required to induce the UPR, but, surprisingly, activation of the adenylate cyclase signaling pathway was not sufficient to trigger the process. Toxin-induced activation of the UPR coincided with increased toxin accumulation in the cytosol. Chemical activation of the heterotrimeric G protein or the UPR also enhanced the onset of CTA1 delivery to the cytosol, thus producing a toxin-sensitive phenotype. These results indicate there is a cAMP-independent response to CT that activates the UPR and thereby enhances the efficiency of intoxication.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Toxina da Cólera/metabolismo , Toxina da Cólera/toxicidade , Imunidade/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia , Vibrio cholerae/imunologia , Vibrio cholerae/patogenicidade
8.
Epidemiol Infect ; 149: e148, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34096499

RESUMO

Cholera is one of the major public health problems in the state of Odisha, India since centuries. The current paper is a comprehensive report on epidemiology of cholera in Odisha, which was documented from 1993. PubMed and Web of Knowledge were searched for publications reporting cholera in Odisha during the period 1993-2015. The search was performed using the keywords 'Odisha' and/or 'Orissa' and 'Cholera'. In addition, manual search was undertaken to find out relevant papers. During the study period, a total of 37 cholera outbreaks were reported with an average of >1.5 cholera outbreaks per year and case fatality ratio was 0.3%. Vibrio cholerae O1 Ogawa serotype was the major causative agent in most of the cholera cases. The recent studies demonstrated the prevalence of V. cholerae O1, El Tor variants carrying ctxB1, ctxB7 and Haitian variant tcpA allele associated with polymyxin B sensitivity and these variants are replacing the proto type El Tor. The first report of variant ctxB7 in Odisha during super-cyclone 1999 predicted its emergence and subsequent spread causing cholera outbreaks. The prevalence of multidrug-resistant V. cholerae at different time periods created alarming situation. The efficacy trial of oral cholera vaccine (OCV, Shanchol) in a public health set-up in Odisha has shown encouraging results which should be deployed for community level vaccination among the vulnerable population. This paper has taken an effort to disseminate the valuable information of epidemiology of cholera that will influence the policy-makers and epidemiologists for constant surveillance in other parts of Odisha, India and around the globe.


Assuntos
Cólera/epidemiologia , Cólera/prevenção & controle , Antibacterianos/farmacologia , Cólera/microbiologia , Toxina da Cólera/genética , Vacinas contra Cólera/administração & dosagem , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Farmacorresistência Bacteriana Múltipla , Proteínas de Fímbrias/genética , Variação Genética , Genótipo , Humanos , Índia/epidemiologia , Testes de Sensibilidade Microbiana , Prevalência , Sorogrupo , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/genética , Vibrio cholerae/imunologia , Vibrio cholerae/isolamento & purificação
9.
J Immunol ; 202(8): 2431-2450, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30867241

RESUMO

OmpU, one of the porins of Gram-negative bacteria Vibrio cholerae, induces TLR1/2-MyD88-NF-κB-dependent proinflammatory cytokine production by monocytes and macrophages of human and mouse origin. In this study, we report that in both the cell types, OmpU-induced proinflammatory responses involve activation of MAPKs (p38 and JNK). Interestingly, we observed that in OmpU-treated macrophages, p38 activation is TLR2 dependent, but JNK activation happens through a separate pathway involving reactive oxygen species (ROS) generation by NADPH oxidase complex and mitochondrial ROS. Further, we observed that OmpU-mediated mitochondrial ROS generation probably depends on OmpU translocation to mitochondria and NADPH oxidase-mediated ROS production is due to activation of scavenger receptor CD36. For the first time, to our knowledge, we are reporting that a Gram-negative bacterial protein can activate CD36 as a pattern recognition receptor. Additionally, we found that in OmpU-treated monocytes, both JNK and p38 activation is linked to the TLR2 activation only. Therefore, the ability of macrophages to employ multiple receptors such as TLR2 and CD36 to recognize a single ligand, as in this case OmpU, probably explains the very basic nature of macrophages being more proinflammatory than monocytes.


Assuntos
Adesinas Bacterianas/imunologia , Antígenos CD36/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/imunologia , Espécies Reativas de Oxigênio/imunologia , Vibrio cholerae/imunologia , Animais , Humanos , Macrófagos/patologia , Camundongos , Monócitos/imunologia , Monócitos/patologia , Células RAW 264.7 , Células THP-1
10.
J Bacteriol ; 202(24)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32540930

RESUMO

Current mouse models for evaluating the efficacy of live oral cholera vaccines (OCVs) have important limitations. Conventionally raised adult mice are resistant to intestinal colonization by Vibrio cholerae, but germfree mice can be colonized and have been used to study OCV immunogenicity. However, germfree animals have impaired immune systems and intestinal physiology; also, live OCVs colonize germfree mice for many months, which does not mimic the clearance kinetics of live OCVs in humans. In this study, we leveraged antibiotic-treated, conventionally raised adult mice to study the effects of transient intestinal colonization by a live OCV V. cholerae strain. In a single-dose vaccination regimen, we found that HaitiV, a live-attenuated OCV candidate, was cleared by streptomycin-treated adult mice within 2 weeks after oral inoculation. This transient colonization elicited far stronger adaptive immune correlates of protection against cholera than did inactivated whole-cell HaitiV. Infant mice from HaitiV-vaccinated dams were also significantly more protected from choleric disease than pups from inactivated-HaitiV-vaccinated dams. Our findings establish the benefits of antibiotic-treated mice for live-OCV studies as well as their limitations and underscore the immunogenicity of HaitiV.IMPORTANCE Oral cholera vaccines (OCVs) are being deployed to combat cholera, but current killed OCVs require multiple doses and show little efficacy in young children. Live OCVs have the potential to overcome these limitations, but small-animal models for testing OCVs have shortcomings. We used an antibiotic treatment protocol for conventional adult mice to study the effects of short-term colonization by a single dose of HaitiV, a live-OCV candidate. Vaccinated mice developed vibriocidal antibodies against V. cholerae and delivered pups that were resistant to cholera, whereas mice vaccinated with inactivated HaitiV did not. These findings demonstrate HaitiV's immunogenicity and suggest that this antibiotic treatment protocol will be useful for evaluating the efficacy of live OCVs.


Assuntos
Vacinas contra Cólera/imunologia , Cólera/imunologia , Intestinos/microbiologia , Vacinas de Produtos Inativados/imunologia , Vibrio cholerae/imunologia , Imunidade Adaptativa , Animais , Antibacterianos/administração & dosagem , Anticorpos Antibacterianos/imunologia , Cólera/microbiologia , Cólera/prevenção & controle , Vacinas contra Cólera/administração & dosagem , Vacinas contra Cólera/genética , Modelos Animais de Doenças , Feminino , Humanos , Intestinos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Estreptomicina/administração & dosagem , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/genética , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento
11.
BMC Immunol ; 21(1): 29, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450807

RESUMO

BACKGROUND: Cholera, an acute watery diarrhoeal disease caused by Vibrio cholerae serogroup O1 and O139 across the continents. Replacing the existing WHO licensed killed multiple-dose oral cholera vaccines that demand 'cold chain supply' at 2-8 °C with a live, single-dose and cold chain-free vaccine would relieve the significant bottlenecks and cost determinants in cholera vaccination campaigns. In this direction, a prototype cold chain-free live attenuated cholera vaccine formulation (LACV) was developed against the toxigenic wild-type (WT) V. cholerae O139 serogroup. LACV was found stable and retained its viability (5 × 106 CFU/mL), purity and potency at room temperature (25 °C ± 2 °C, and 60% ± 5% relative humidity) for 140 days in contrast to all the existing WHO licensed cold-chain supply (2-8 °C) dependent killed oral cholera vaccines. RESULTS: The LACV was evaluated for its colonization potential, reactogenicity, immunogenicity and protective efficacy in animal models after its storage at room temperature for 140 days. In suckling mice colonization assay, the LACV recorded the highest recovery of (7.2 × 107 CFU/mL) compared to those of unformulated VCUSM14P (5.6 × 107 CFU/mL) and the WT O139 strain (3.5 × 107 CFU/mL). The LACV showed no reactogenicity even at an inoculation dose of 104-106 CFU/mL in a rabbit ileal loop model. The rabbits vaccinated with the LACV or unformulated VCUSM14P survived a challenge with WT O139 and showed no signs of diarrhoea or death in the reversible intestinal tie adult rabbit diarrhoea (RITARD) model. Vaccinated rabbits recorded a 275-fold increase in anti-CT IgG and a 15-fold increase in anti-CT IgA antibodies compared to those of rabbits vaccinated with unformulated VCUSM14P. Vibriocidal antibodies were increased by 31-fold with the LACV and 14-fold with unformulated VCUSM14P. CONCLUSION: The vaccine formulation mimics a natural infection, is non-reactogenic and highly immunogenic in vivo and protects animals from lethal wild-type V. cholerae O139 challenge. The single dose LACV formulation was found to be stable at room temperature (25 ± 2 °C) for 140 days and it would result in significant cost savings during mass cholera vaccination campaigns.


Assuntos
Formação de Anticorpos/imunologia , Vacinas contra Cólera/imunologia , Cólera/imunologia , Vacinas Atenuadas/imunologia , Administração Oral , Animais , Anticorpos Antibacterianos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Refrigeração/métodos , Vacinação/métodos , Vibrio cholerae/imunologia
12.
PLoS Pathog ; 14(2): e1006841, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29432487

RESUMO

Vibrio cholerae is an aquatic gram-negative microbe responsible for cholera, a pandemic disease causing life-threatening diarrheal outbreaks in populations with limited access to health care. Like most pathogenic bacteria, V. cholerae secretes virulence factors to assist colonization of human hosts, several of which bind carbohydrate receptors found on cell-surfaces. Understanding how pathogenic virulence proteins specifically target host cells is important for the development of treatment strategies to fight bacterial infections. Vibrio cholerae cytolysin (VCC) is a secreted pore-forming toxin with a carboxy-terminal ß-prism domain that targets complex N-glycans found on mammalian cell-surface proteins. To investigate glycan selectivity, we studied the VCC ß-prism domain and two additional ß-prism domains found within the V. cholerae biofilm matrix protein RbmC. We show that the two RbmC ß-prism domains target a similar repertoire of complex N-glycan receptors as VCC and find through binding and modeling studies that a branched pentasaccharide core (GlcNAc2-Man3) represents the likely footprint interacting with these domains. To understand the structural basis of V. cholerae ß-prism selectivity, we solved high-resolution crystal structures of fragments of the pentasaccharide core bound to one RbmC ß-prism domain and conducted mutagenesis experiments on the VCC toxin. Our results highlight a common strategy for cell-targeting utilized by both toxin and biofilm matrix proteins in Vibrio cholerae and provide a structural framework for understanding the specificity for individual receptors. Our results suggest that a common strategy for disrupting carbohydrate interactions could affect multiple virulence factors produced by V. cholerae, as well as similar ß-prism domains found in other vibrio pathogens.


Assuntos
Biofilmes , Citotoxinas/metabolismo , Modelos Moleculares , Perforina/metabolismo , Polissacarídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Vibrio cholerae/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células Sanguíneas/metabolismo , Cristalografia por Raios X , Citotoxinas/química , Citotoxinas/genética , Cinética , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Perforina/química , Perforina/genética , Polissacarídeos/química , Domínios e Motivos de Interação entre Proteínas , Coelhos , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vibrio cholerae/imunologia , Vibrio cholerae/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
Dokl Biochem Biophys ; 490(1): 19-21, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32342306

RESUMO

Gold nanoparticle conjugates with Vibrio cholerae antigens were synthesized. The animals were immunized with the obtained conjugates. Rabbit polyclonal antibodies to the antigens were obtained, which showed high specific activity. On the model of white laboratory mice, the protective activity of conjugates of cholera antigens with nanoparticles during infection of vaccinated animals was evaluated using a commercial vaccine as a control. It was shown that in terms of immunogenicity, the created prototypes of cholera vaccine using gold nanoparticles as a carrier and adjuvant complied with the production regulations for the Russian national cholera chemical vaccine.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Vacinas contra Cólera/imunologia , Cólera/imunologia , Cólera/prevenção & controle , Ouro/química , Nanopartículas Metálicas/química , Animais , Células Apresentadoras de Antígenos , Antioxidantes/química , Chinchila , Imunização , Camundongos , Nanotecnologia/métodos , Reprodutibilidade dos Testes , Vacinas Atenuadas/imunologia , Vibrio cholerae/imunologia
14.
BMC Genomics ; 20(1): 241, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30909880

RESUMO

BACKGROUND: Of the hundreds of Vibrio cholerae serogroups, O1 and O139 are the main epidemic-causing ones. Although non-O1/non-O139 serogroups rarely cause epidemics, the possibility exists for strains within them to have pathogenic potential. RESULTS: We selected 25 representative strains within 16 V. cholerae serogroups and examined their genomic and functional characteristics. We tentatively constructed a gene pool containing 405 homologous gene clusters, which is well organized and functions in O-antigen polysaccharide (O-PS) synthesis. Our network analysis indicate that great diversity exists in O-PS among the serogroups, and several serogroup pairs share a high number of homologous genes (e.g., O115 and O37; O170 and O139; O12 and O39). The phylogenetic analysis results suggest that a close relationship exists between serogroups O170, O89 and O144, based on neighbor-joining (NJ) and gene trees, although serogroup O159 showed an inconsistent phylogenetic relationship between the NJ tree and the gene tree, indicating that it may have undergone extensive recombination and horizontal gene transfer. Different phylogenetic structures were observed between the core genes, pan genes, and O-PS genes. The virulence gene analysis indicated that the virulence genes from all the representative strains may have their sources from four particular bacteria (Pseudomonas aeruginosa, V. vulnificus, Haemophilus somnus and H. influenzae), which suggests that V. cholerae may have exchanged virulence genes with other bacterial genera or species in certain environments. The mobile genetic element analysis indicated that O159 carries nearly complete VSP-II and partial VPI-1 and VPI-2, O170 carries partial VPI-1 and VPI-2, and several non-O1/non-O139 strains contain full or partial VPI-1 and VPI-2. Several genes showing evidence of positive selection are involved in chemotaxis, Na + resistance, or cell wall synthesis, suggestive of environmental adaptation. CONCLUSIONS: This study reports on the newly sequenced O159 and O170 genomes and their comparisons with other V. cholerae serogroups. The complicated O-PS network of constituent genes highlights the detailed recombination mechanisms that have acted on the serogroups' genomes. The serogroups have different virulence-related gene profiles, and there is evidence of positive selection acting on other genes, possibly during adaptation to different environments and hosts.


Assuntos
Proteínas de Bactérias/genética , Genômica/métodos , Antígenos O/biossíntese , Vibrio cholerae/genética , Redes Reguladoras de Genes , Transferência Genética Horizontal , Antígenos O/imunologia , Filogenia , Seleção Genética , Análise de Sequência de DNA/métodos , Sorogrupo , Vibrio cholerae/imunologia , Vibrio cholerae/metabolismo , Fatores de Virulência/genética
15.
PLoS Pathog ; 13(11): e1006729, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29155899

RESUMO

Type VI secretion systems (T6SS) function to deliver lethal payloads into target cells. Many studies have shown that protection against a single, lethal T6SS effector protein requires a cognate antidote immunity protein, both of which are often encoded together in a two-gene operon. The T6SS and an effector-immunity pair is sufficient for both killing and immunity. HereIn this paper we describe a T6SS effector operon that differs from conventional effector-immunity pairs in that eight genes are necessary for lethal effector function, yet can be countered by a single immunity protein. In this study, we investigated the role that the PefE T6SS immunity protein plays in recognition between two strains harboring nearly identical effector operons. Interestingly, despite containing seven of eight identical effector proteins, the less conserved immunity proteins only provided protection against their native effectors, suggesting that specificity and recognition could be dependent on variation within an immunity protein and one effector gene product. The variable effector gene product, PefD, is encoded upstream from pefE, and displays toxic activity that can be countered by PefE independent of T6SS-activity. Interestingly, while the entire pef operon was necessary to exert toxic activity via the T6SS in P. mirabilis, production of PefD and PefE alone was unable to exert this effector activity. Chimeric PefE proteins constructed from two P. mirabilis strains were used to localize immunity function to three amino acids. A promiscuous immunity protein was created using site-directed mutagenesis to change these residues from one variant to another. These findings support the notion that subtle differences between conserved effectors are sufficient for T6SS-mediated kin discrimination and that PefD requires additional factors to function as a T6SS-dependent effector.


Assuntos
Óperon , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/imunologia , Vibrio cholerae/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Mutagênese Sítio-Dirigida/métodos , Proteus mirabilis/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/imunologia
16.
Microb Pathog ; 134: 103600, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31202906

RESUMO

INTRODUCTION: Severe intestinal infections caused by V. cholerae, ETEC and EHEC have contributed to the mortality rate in developing countries. Vibrio Cholera, ETEC and EHEC bacterium with the production of CT, LT and Stx2 toxins respectively lead to severe watery and bloody diarrhea. This study aimed to investigate a trimeric vaccine candidate containing recombinant chimeric protein, encapsulate the protein in chitosan nanoparticles and assess its immunogenicity. METHODS: The LSC recombinant gene was used. It is composed of LTB (L), STXB (S) and CTXB (C) subunits respectively. The LSC recombinant protein was expressed and purified and confirmed by western blotting. The purified protein was encapsulated in chitosan nanoparticles, and its size was measured. BalB/c mice were immunized in four groups through oral and injection methods by LSC protein. The antibody titer was then evaluated by ELISA, and finally, the challenge test of the toxins from all three bacteria was done on the immunized mouse. RESULTS: After expression and purification LSC protein size of nanoparticles containing protein was measured at 104.6 nm. Nanoparticles were able to induce systemic and mucosal immune responses by generating a useful titer of IgG and IgA. The challenge results with LT, CT and Stx toxins showed that the LSC protein might partially neutralize the effect of toxins. CONCLUSION: LSC chimeric protein with the simultaneous three essential antigens have a protective effect against the toxins produced by ETEC, EHEC and Vibrio cholera bacteria and it can be used in vaccines to prevent Diarrhea caused by these three bacteria.


Assuntos
Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Quitosana/farmacologia , Imunização , Nanopartículas/química , Proteínas Recombinantes de Fusão/imunologia , Vacinação , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/isolamento & purificação , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Toxina da Cólera/genética , Toxina da Cólera/imunologia , Diarreia/microbiologia , Diarreia/prevenção & controle , Modelos Animais de Doenças , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/imunologia , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Regulação Bacteriana da Expressão Gênica , Imunidade nas Mucosas , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Proteínas Recombinantes de Fusão/genética , Toxinas Shiga/genética , Toxinas Shiga/imunologia , Análise de Sobrevida , Vibrio cholerae/genética , Vibrio cholerae/imunologia
17.
Nature ; 494(7438): 489-91, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23446421

RESUMO

Bacteriophages (or phages) are the most abundant biological entities on earth, and are estimated to outnumber their bacterial prey by tenfold. The constant threat of phage predation has led to the evolution of a broad range of bacterial immunity mechanisms that in turn result in the evolution of diverse phage immune evasion strategies, leading to a dynamic co-evolutionary arms race. Although bacterial innate immune mechanisms against phage abound, the only documented bacterial adaptive immune system is the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system, which provides sequence-specific protection from invading nucleic acids, including phage. Here we show a remarkable turn of events, in which a phage-encoded CRISPR/Cas system is used to counteract a phage inhibitory chromosomal island of the bacterial host. A successful lytic infection by the phage is dependent on sequence identity between CRISPR spacers and the target chromosomal island. In the absence of such targeting, the phage-encoded CRISPR/Cas system can acquire new spacers to evolve rapidly and ensure effective targeting of the chromosomal island to restore phage replication.


Assuntos
Bacteriófagos/genética , Bacteriófagos/imunologia , Genes Virais/genética , Imunidade Inata , Vibrio cholerae/imunologia , Vibrio cholerae/virologia , Sequência de Aminoácidos , Bacteriólise , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/patogenicidade , Sequência de Bases , Evolução Biológica , Cromossomos Bacterianos/genética , Deleção de Genes , Genes Virais/imunologia , Genoma Viral/genética , Ilhas Genômicas/genética , Sequências Repetidas Invertidas/genética , Dados de Sequência Molecular , Especificidade por Substrato , Vibrio cholerae/genética
18.
J Infect Dis ; 218(suppl_3): S141-S146, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30184117

RESUMO

Vibrio cholerae is a prototypical noninvasive mucosal pathogen, yet infection generates long-lasting protection against subsequent disease. Vibriocidal antibody responses are an imperfect but established correlate of protection against cholera following both infection and vaccination. However, vibriocidal antibody responses are likely a surrogate marker for longer-lasting functional immune responses that target the O-polysaccharide antigen at the mucosal surface. While the current bivalent inactivated oral whole cell vaccine is being increasingly used to prevent cholera in areas where the disease is a threat, the most significant limitation of this vaccine is it offers relatively limited direct protection in young children. Future strategies for cholera vaccination include the development of cholera conjugate vaccines and the further development of live attenuated vaccines. Ultimately, the goal of a multivalent vaccine for cholera and other childhood enteric infections that can be incorporated into a standard immunization schedule should be realized.


Assuntos
Vacinas contra Cólera/imunologia , Cólera/imunologia , Imunidade/imunologia , Anticorpos Antibacterianos/imunologia , Formação de Anticorpos/imunologia , Toxina da Cólera/imunologia , Humanos , Esquemas de Imunização , Antígenos O/imunologia , Vacinação/métodos , Vacinas Atenuadas/imunologia , Vacinas Conjugadas/imunologia , Vacinas de Produtos Inativados/imunologia , Vibrio cholerae/imunologia
19.
J Infect Dis ; 218(4): 645-653, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29659916

RESUMO

Background: Cholera is a public health problem worldwide, and the risk factors for infection are only partially understood. Methods: We prospectively studied household contacts of patients with cholera to compare those who were infected to those who were not. We constructed predictive machine learning models of susceptibility, using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. Results: We found that machine learning models based on gut microbiota, as well as models based on known clinical and epidemiological risk factors, predicted V. cholerae infection. A predictive gut microbiota of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. Conclusion: These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.


Assuntos
Cólera/epidemiologia , Cólera/imunologia , Suscetibilidade a Doenças , Microbioma Gastrointestinal , Microbiota , Vibrio cholerae/crescimento & desenvolvimento , Vibrio cholerae/imunologia , Adolescente , Adulto , Criança , Pré-Escolar , Simulação por Computador , Métodos Epidemiológicos , Características da Família , Saúde da Família , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
20.
J Bacteriol ; 200(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29483163

RESUMO

Diarrhea is the most common infection in children under the age of 5 years worldwide. In spite of this, only a few vaccines to treat infectious diarrhea exist, and many of the available vaccines are sparingly and sporadically administered. Major obstacles to the development and widespread implementation of vaccination include the ease and cost of production, distribution, and delivery. Here we present a novel, customizable, and self-assembling vaccine platform that exploits the Vibrio cholerae bacterial biofilm matrix for antigen presentation. We use this technology to create a proof-of-concept, live-attenuated whole-cell vaccine that is boosted by spontaneous association of a secreted protein antigen with the cell surface. Sublingual administration of this live-attenuated vaccine to mice confers protection against V. cholerae challenge and elicits the production of antigen-specific IgA in stool. The platform presented here enables the development of antigen-boosted vaccines that are simple to produce and deliver, addressing many of the obstacles to vaccination against diarrheal diseases. This may also serve as a paradigm for the development of broadly protective biofilm-based vaccines against other mucosal infections.IMPORTANCE Diarrheal disease is the most common infection afflicting children worldwide. In resource-poor settings, these infections are correlated with cognitive delay, stunted growth, and premature death. With the development of efficacious, affordable, and easily administered vaccines, such infections could be prevented. While a major focus of research on biofilms has been their elimination, here we harness the bacterial biofilm to create a customizable platform for cost-effective, whole-cell mucosal vaccines that self-incorporate secreted protein antigens. We use this platform to develop a sublingually administered live-attenuated prototype vaccine based on Vibrio cholerae This serves not only as a proof of concept for a multivalent vaccine against common bacterial enteric pathogens but also as a paradigm for vaccines utilizing other bacterial biofilms to target mucosal infections.


Assuntos
Vacinas contra Cólera/imunologia , Cólera/prevenção & controle , Vibrio cholerae/imunologia , Animais , Anticorpos Antibacterianos/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA