Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.943
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 173(5): 1135-1149.e15, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29754817

RESUMO

A primary cause of disease progression in type 2 diabetes (T2D) is ß cell dysfunction due to inflammatory stress and insulin resistance. However, preventing ß cell exhaustion under diabetic conditions is a major therapeutic challenge. Here, we identify the vitamin D receptor (VDR) as a key modulator of inflammation and ß cell survival. Alternative recognition of an acetylated lysine in VDR by bromodomain proteins BRD7 and BRD9 directs association to PBAF and BAF chromatin remodeling complexes, respectively. Mechanistically, ligand promotes VDR association with PBAF to effect genome-wide changes in chromatin accessibility and enhancer landscape, resulting in an anti-inflammatory response. Importantly, pharmacological inhibition of BRD9 promotes PBAF-VDR association to restore ß cell function and ameliorate hyperglycemia in murine T2D models. These studies reveal an unrecognized VDR-dependent transcriptional program underpinning ß cell survival and identifies the VDR:PBAF/BAF association as a potential therapeutic target for T2D.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Receptores de Calcitriol/metabolismo , Fatores de Transcrição/metabolismo , Vitamina D/farmacologia , Animais , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Montagem e Desmontagem da Cromatina , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Humanos , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mutagênese Sítio-Dirigida , Fosforilação Oxidativa/efeitos dos fármacos , Ligação Proteica , Interferência de RNA , RNA Guia de Cinetoplastídeos/genética , RNA Interferente Pequeno/metabolismo , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 712-713: 149962, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642493

RESUMO

The human cathelicidin LL-37 shows activity against microorganisms, but it is also cytotoxic to host cells. The CAMP gene codes for the LL-37 precursor hCAP18 which is processed extracellularly to active LL-37. It has previously been shown that vitamin D stimulates CAMP gene activity, but less information is available demonstrating that vitamin D also can increase hCAP18/LL-37 protein production. Here, we show with RT-qPCR that a physiological concentration of vitamin D (50 nM) enhances CAMP mRNA levels by about 170 times in human THP-1 monocyte cells. Stimulation with 50 nM vitamin D increases hCAP18/LL-37 protein contents 3-4 times in THP-1 cell lysates demonstrated by both dot blot analysis and ELISA applying two different hCAP18/LL-37 antibodies. Treatment with the proteasome inhibitor MG132 enhances hCAP18/LL-37 levels, suggesting that turnover of hCAP18/LL-37 protein is regulated by the proteasome. The hCAP18/LL-37 concentration in vitamin D-stimulated THP-1 cells corresponds to 1.04 µM LL-37. Interestingly, synthetic LL-37, at this concentration, reduces viability of human osteoblast-like MG63 cells, whereas the THP-1 cells are less sensitive as demonstrated by the MTT assay. In summary, we show that vitamin D enhances hCAP18/LL-37 production, and that this effect can be of physiological/pathophysiological relevance for LL-37-induced human osteoblast toxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Osteoblastos , Vitamina D , Humanos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Células THP-1 , Complexo de Endopeptidases do Proteassoma/metabolismo , Sobrevivência Celular/efeitos dos fármacos
3.
BMC Microbiol ; 24(1): 173, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762474

RESUMO

BACKGROUND: The persistent surge in antimicrobial resistance represents a global disaster. The initial attachment and maturation of microbial biofilms are intimately related to antimicrobial resistance, which in turn exacerbates the challenge of eradicating bacterial infections. Consequently, there is a pressing need for novel therapies to be employed either independently or as adjuvants to diminish bacterial virulence and pathogenicity. In this context, we propose a novel approach focusing on vitamin D and vitamin K1 as potential antibiofilm agents that target Gram-negative bacteria which are hazardous to human health. RESULTS: Out of 130 Gram-negative bacterial isolates, 117 were confirmed to be A. baumannii (21 isolates, 17.9%), K. pneumoniae (40 isolates, 34.2%) and P. aeruginosa (56 isolates, 47.9%). The majority of the isolates were obtained from blood and wound specimens (27.4% each). Most of the isolates exhibited high resistance rates to ß-lactams (60.7-100%), ciprofloxacin (62.5-100%), amikacin (53.6-76.2%) and gentamicin (65-71.4%). Approximately 93.2% of the isolates were biofilm producers, with 6.8% categorized as weak, 42.7% as moderate, and 50.4% as strong biofilm producers. The minimum inhibitory concentrations (MICs) of vitamin D and vitamin K1 were 625-1250 µg mL-1 and 2500-5000 µg mL-1, respectively, against A. baumannii (A5, A20 and A21), K. pneumoniae (K25, K27 and K28), and P. aeruginosa (P8, P16, P24 and P27) clinical isolates and standard strains A. baumannii (ATCC 19606 and ATCC 17978), K. pneumoniae (ATCC 51503) and P. aeruginosa PAO1 and PAO14. Both vitamins significantly decreased bacterial attachment and significantly eradicated mature biofilms developed by the selected standard and clinical Gram-negative isolates. The anti-biofilm effects of both supplements were confirmed by a notable decrease in the relative expression of the biofilm-encoding genes cusD, bssS and pelA in A. baumannii A5, K. pneumoniae K28 and P. aeruginosa P16, respectively. CONCLUSION: This study highlights the anti-biofilm activity of vitamins D and K1 against the tested Gram-negative strains, which emphasizes the potential of these vitamins for use as adjuvant therapies to increase the efficacy of treatment for infections caused by multidrug-resistant (MDR) strains and biofilm-forming phenotypes. However, further validation through in vivo studies is needed to confirm these promising results.


Assuntos
Antibacterianos , Biofilmes , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Vitamina D , Vitamina K 1 , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Vitamina K 1/farmacologia , Antibacterianos/farmacologia , Vitamina D/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/fisiologia , Acinetobacter baumannii/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos
4.
Respir Res ; 25(1): 321, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174953

RESUMO

BACKGROUND: Mitochondria is prone to oxidative damage by endogenous and exogenous sources of free radicals, including particulate matter (PM). Given the role of mitochondria in inflammatory disorders, such as asthma and chronic obstructive pulmonary disease, we hypothesized that supplementation of vitamin D may play a protective role in PM-induced mitochondrial oxidative damages of human bronchial epithelial BEAS-2B cells. METHODS: BEAS-2B cells were pretreated with 1,25(OH)2D3, an active form of vitamin D, for 1 h prior to 24-hour exposure to PM (SRM-1648a). Oxidative stress was measured by flow cytometry. Mitochondrial functions including mitochondrial membrane potential, ATP levels, and mitochondrial DNA copy number were analyzed. Additionally, mitochondrial ultrastructure was examined using transmission electron microscopy. Intracellular and mitochondrial calcium concentration changes were assessed using flow cytometry based on the expression of Fluo-4 AM and Rhod-2 AM, respectively. Pro-inflammatory cytokines, including IL-6 and MCP-1, were quantified using ELISA. The expression levels of antioxidants, including SOD1, SOD2, CAT, GSH, and NADPH, were determined. RESULTS: Our findings first showed that 24-hour exposure to PM led to the overproduction of reactive oxygen species (ROS) derived from mitochondria. PM-induced mitochondrial oxidation resulted in intracellular calcium accumulation, particularly within mitochondria, and alterations in mitochondrial morphology and functions. These changes included loss of mitochondrial membrane integrity, disarrayed cristae, mitochondrial membrane depolarization, reduced ATP production, and increased mitochondrial DNA copy number. Consequently, PM-induced mitochondrial damage triggered the release of certain inflammatory cytokines, such as IL-6 and MCP-1. Similar to the actions of mitochondrial ROS inhibitor MitoTEMPO, 1,25(OH)2D3 conferred protective effects on mtDNA alterations, mitochondrial damages, calcium dyshomeostasis, thereby decreasing the release of certain inflammatory cytokines. We found that greater cellular level of 1,25(OH)2D3 upregulated the expression of enzymatic (SOD1, SOD2, and CAT) and non-enzymatic (GSH and NADPH) antioxidants to modulate cellular redox homeostasis. CONCLUSION: Our study provides new evidence that 1,25(OH)2D3 acts as an antioxidant, enhancing BEAS-2B antioxidant responses to regulate mitochondrial ROS homeostasis and mitochondrial function, thereby enhancing epithelial defense against air pollution exposure.


Assuntos
Brônquios , Cálcio , Células Epiteliais , Homeostase , Mitocôndrias , Material Particulado , Humanos , Material Particulado/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Cálcio/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Vitamina D/farmacologia , Espécies Reativas de Oxigênio/metabolismo
5.
Exp Dermatol ; 33(1): e14926, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702410

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease in which defective T cells, immune complex deposition and other immune system alterations contribute to pathological changes of multiple organ systems. The vitamin D metabolite c is a critical immunomodulator playing pivotal roles in the immune system. Epidemiological evidence indicates that vitamin D deficiency is correlated with the severity of SLE. Our aim is to investigate the effects of 1,25(OH)2D3 (VitD3) on the activation of myeloid dendritic cells (mDCs) by autologous DNA-containing immune complex (DNA-ICs), and the effects of VitD3 on immune system balance during SLE. We purified DNA-ICs from the serum of SLE patients and isolated mDCs from normal subjects. In vitro studies showed that DNA-ICs were internalized and consumed by mDCs. VitD3 blocked the effects of DNA-ICs on RelB, IL-10 and TNF-α in mDCs. Further analysis indicated that DNA-ICs stimulated histone acetylation in the RelB promoter region, which was inhibited by VitD3. Knockdown of the histone deacetylase 3 gene (HDAC3) blocked these VitD3-mediated effects. Co-culture of mDCs and CD4+ T cells showed that VitD3 inhibited multiple processes mediated by DNA-ICs, including proliferation, downregulation of IL-10, TGF-ß and upregulation of TNF-α. Moreover, VitD3 could also reverse the effects of DNA-IC-induced imbalance of CD4+ CD127- Foxp3+ T cells and CD4+ IL17+ T cells. Taken together, our results indicated that autologous DNA-ICs stimulate the activation of mDCs in the pathogenesis of SLE, and VitD3 inhibits this stimulatory effects of DNA-ICs by negative transcriptional regulation of RelB gene and maintaining the Treg/Th17 immune cell balance. These results suggest that vitamin D may have therapeutic value for the treatment of SLE.


Assuntos
Colecalciferol , Lúpus Eritematoso Sistêmico , Humanos , Colecalciferol/farmacologia , Interleucina-10 , Complexo Antígeno-Anticorpo , Fator de Necrose Tumoral alfa , Inflamação , Vitamina D/farmacologia , Células Dendríticas/metabolismo , DNA
6.
Curr Opin Clin Nutr Metab Care ; 27(5): 421-427, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38836886

RESUMO

PURPOSE OF REVIEW: Deficiencies in micronutrients persist as widespread global challenges, where supplementation remains a crucial therapeutic approach. This review aims to elucidate the intricate relationships between micronutrient supplementation - specifically iron, selenium (Se), and vitamin D (Vit D) - and gut microbiota composition, investigating their collective impact on host health and disease susceptibility. RECENT FINDINGS: Maintaining balanced iron levels is essential for gut microbiota equilibrium and host health, as both iron deficiency and excess disrupt gut bacterial balance, affecting colon health. Se supplementation can restore and improve the gut microbial balance, influencing health outcomes not only in the gut but also in areas such as neuroprotection in the brain, testicular health, and metabolic syndrome. Clinical and experimental models demonstrate that Vit D modulates the gut microbiome, enhancing anti-inflammatory effects, supporting metabolic health, and potentially reducing the risk of gut-related behavioral changes and diseases. SUMMARY: Findings of this review emphasize that balanced iron levels are essential for maintaining a healthy gut microbiota composition and underscore the beneficial effects of Se and Vit D in modulating the gut microbiome. The interactions between micronutrients and the gut microbiome are complex but may have a broad spectrum of health outcomes.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Ferro , Micronutrientes , Selênio , Vitamina D , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Vitamina D/farmacologia , Vitamina D/administração & dosagem , Selênio/administração & dosagem , Selênio/farmacologia , Micronutrientes/farmacologia , Animais
7.
Exp Physiol ; 109(2): 283-301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37983200

RESUMO

Evidence suggests vitamin D3 (VD) supplementation can reduce accumulation of adipose tissue and inflammation and promote myogenesis in obese individuals, and thus could mitigate obesity-induced reductions in skeletal muscle (SkM) contractility. However, this is yet to be directly investigated. This study, using the work-loop technique, examined effects of VD (cholecalciferol) supplementation on isolated SkM contractility. Female mice (n = 37) consumed standard low-fat diet (SLD) or high-fat diet (HFD), with or without VD (20,000 IU/kg-1 ) for 12 weeks. Soleus and EDL (n = 8-10 per muscle per group) were isolated and absolute and normalized (to muscle size and body mass) isometric force and power output (PO) were measured, and fatigue resistance determined. Absolute and normalized isometric force and PO of soleus were unaffected by diet (P > 0.087). However, PO normalized to body mass was reduced in HFD groups (P < 0.001). Isometric force of extensor digitorum longus (EDL) was unaffected by diet (P > 0.588). HFD reduced EDL isometric stress (P = 0.048) and absolute and normalized PO (P < 0.031), but there was no effect of VD (P > 0.493). Cumulative work during fatiguing contractions was lower in HFD groups (P < 0.043), but rate of fatigue was unaffected (P > 0.060). This study uniquely demonstrated that high-dose VD had limited effects on SkM contractility and did not offset demonstrated adverse effects of HFD. However, small and moderate effect sizes suggest improvement in EDL muscle performance and animal morphology in HFD VD groups. Given effect sizes observed, coupled with proposed inverted U-shaped dose-effect curve, future investigations are needed to determine dose/duration specific responses to VD, which may culminate in improved function of HFD SkM.


Assuntos
Dieta Hiperlipídica , Vitamina D , Camundongos , Feminino , Animais , Dieta Hiperlipídica/efeitos adversos , Vitamina D/farmacologia , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Obesidade/tratamento farmacológico , Suplementos Nutricionais
8.
Neurochem Res ; 49(9): 2379-2392, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38837094

RESUMO

Epilepsy is a common neurological disorder, and the exploration of potential therapeutic drugs for its treatment is still ongoing. Vitamin D has emerged as a promising treatment due to its potential neuroprotective effects and anti-epileptic properties. This study aimed to investigate the effects of vitamin D on epilepsy and neuroinflammation in juvenile mice using network pharmacology and molecular docking, with a focus on the mammalian target of rapamycin (mTOR) signaling pathway. Experimental mouse models of epilepsy were established through intraperitoneal injection of pilocarpine, and in vitro injury models of hippocampal neurons were induced by glutamate (Glu) stimulation. The anti-epileptic effects of vitamin D were evaluated both in vivo and in vitro. Network pharmacology and molecular docking analysis were used to identify potential targets and regulatory pathways of vitamin D in epilepsy. The involvement of the mTOR signaling pathway in the regulation of mouse epilepsy by vitamin D was validated using rapamycin (RAPA). The levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) were assessed by enzyme-linked immunosorbent assay (ELISA). Gene and protein expressions were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. The terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) staining was used to analyze the apoptosis of hippocampal neurons. In in vivo experiments, vitamin D reduced the Racine scores of epileptic mice, prolonged the latency of epilepsy, and inhibited the production of TNF-α, IL-1ß, and IL-6 in the hippocampus. Furthermore, network pharmacology analysis identified RAF1 as a potential target of vitamin D in epilepsy, which was further confirmed by molecular docking analysis. Additionally, the mTOR signaling pathway was found to be involved in the regulation of mouse epilepsy by vitamin D. In in vitro experiments, Glu stimulation upregulated the expressions of RAF1 and LC3II/LC3I, inhibited mTOR phosphorylation, and induced neuronal apoptosis. Mechanistically, vitamin D activated the mTOR signaling pathway and alleviated mouse epilepsy via RAF1, while the use of the pathway inhibitor RAPA reversed this effect. Vitamin D alleviated epilepsy symptoms and neuroinflammation in juvenile mice by activating the mTOR signaling pathway via RAF1. These findings provided new insights into the molecular mechanisms underlying the anti-epileptic effects of vitamin D and further supported its use as an adjunctive therapy for existing anti-epileptic drugs.


Assuntos
Epilepsia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-raf , Transdução de Sinais , Serina-Treonina Quinases TOR , Vitamina D , Animais , Serina-Treonina Quinases TOR/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Masculino , Proteínas Proto-Oncogênicas c-raf/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
9.
Clin Exp Rheumatol ; 42(3): 736-745, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37877411

RESUMO

OBJECTIVES: The deletion of chondrocyte autophagy seems to play a key role in the pathogenesis of osteoarthritis (OA). Patients with OA often have vitamin D (VD) deficiency, and VD supplementation can improve pain and alleviate the progression of joint structures in patients. In this study, we aimed to investigate whether VD could enhance autophagy by activating the adenosine monophosphate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signalling pathway and protect against OA. METHODS: In this study, the levels of target proteins and genes were examined by western blot and qRT-PCR. Apoptotic cells were detected using TUNEL staining. Characteristics of autophagy were observed by LysoTracker red staining, mRFP-GFP-LC3 adenovirus transfection, and transmission electron microscopy. siRNA-mediated AMPK and mTOR knockdown were used to investigate the role of the AMPK/ mTOR signalling pathway in VD-induced autophagy. Haematoxylin and eosin and safranin-O/fast green staining were used detect cartilage alterations. RESULTS: We suggested that VD significantly reduced chondrocyte death and alleviated extracellular matrix degradation. Further studies showed that VD promoted the expression of the autophagy-related protein LC3II through the AMPK/mTOR signalling pathway in chondrocytes, activated lysosome activity, promoted the formation of autophagy-associated lysosomes, which played a crucial role in the degradation of intracellular organelles and maintained homeostasis. The anti-apoptotic effect of VD on chondrocytes was associated with the activation of autophagy. The group of AMPK-normal and mTOR-knockdown in the presence of VD inhibited chondrocyte apoptosis by promoting autophagy. CONCLUSIONS: This study highlights that VD can activate chondrocyte autophagy through the AMPK/mTOR signalling pathway.


Assuntos
Condrócitos , Osteoartrite , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Vitamina D/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Autofagia , Osteoartrite/metabolismo , Apoptose
10.
Mol Biol Rep ; 51(1): 456, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536498

RESUMO

BACKGROUND: To better understand the molecular mechanism responsible for the therapeutic potential of vitamin D, we conducted an analysis of the liver transcriptomes of adult female rats. METHODS: Adult female rats (n = 18) were divided into three groups, receiving different doses of vitamin D: group I, 0; group II, 1000 U/kg; and group III, 5000 U/kg. Growth, body weight, the weight of main organs, blood haematological and biochemical parameters were evaluated. Gene expression in the liver were analyzed using RNA-seq and qPCR techniques. RESULTS: We observed a lower platelet count (p < 0,008) and a significantly greater (p < 0.02) number of WBCs in rats supplemented with 1000 U/kg than in rats from group III (5000 U/kg). Moreover, we noted a trend (p < 0.06) in total cholesterol concentration, suggesting a linear decrease with increasing doses of vitamin D. RNA-seq analysis did not reveal any differentially expressed genes with FDR < 0.05. However, GSEA revealed significant activation of a number of processes and pathways, including: "metallothionein, and TspO/MBR family", and "negative regulation of tumor necrosis factor production". qPCR analysis revealed significant upregulation of the Mt1, Mt2 and Orm1 genes in animals receiving high doses of vitamin D (p < 0.025, p < 0.025, and p < 0009, respectively). Moreover, Srebp2 and Insig2 were significantly lower in both experimental groups than in the control group (p < 0.003 and p < 0.036, respectively). CONCLUSIONS: Our results support the anti-inflammatory, anitioxidant and anticholesterologenic potential of vitamin D but suggest that high doses of vitamin D are needed to obtain significant results in this regard.


Assuntos
Colecalciferol , Vitamina D , Ratos , Feminino , Animais , Colecalciferol/farmacologia , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Vitaminas/farmacologia , Suplementos Nutricionais , Fígado/metabolismo , Expressão Gênica , Orosomucoide/farmacologia
11.
Mol Biol Rep ; 51(1): 748, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874843

RESUMO

Background this study was conducted to assess the effects of vitamin D on differentiation of bone marrow- derived mesenchymal stem cells (BM-MSCs) into insulin producing cells (IPCs). Method BM-MSCs were isolated from femur and tibia of rats and incubated in low (LG) or high glucose (HG) (5mM or 25mM), or high glucose DMEM media supplemented with vitamin D (0.2nM) (HGD) for 14 days. Cells viability was analysis by MTT assay. Differentiation of SCs was confirmed using measuring genes expression level of pdx1 and insulin, and insulin secretion, glucose stimulated insulin secretion, and insulin content by ELISA method. Results Cell viability was significantly higher in HGD than LG (p < 0.05) in day 3, also, in HG and HGD than LG (p < 0.001), and HGD vs. HG (p < 0.001) in day 7. Pdx1 and insulin level was markedly higher in HGD than LG (p < 0.05 and p < 0.01). pdx1 expression was markedly higher in HGD (p < 0.05) than LG, also insulin expression the HG (p < 0.05), and HGD (p < 0.01) groups compared to the LG group. Insulin release at 5mM glucose was notably higher in the HGD group compared to LG (p < 0.05), and at 25mM glucose, both HG and HGD showed significant increases vs. LG (p < 0.05 and p < 0.01, respectively). Insulin content was significantly higher in both 5mM and 25mM glucose for HG and HGD vs. LG (p < 0.01 and p < 0.001, respectively). In conclusion, treatment BM-MSCs with vitamin D could increase their differentiation into IPCs and it can be considered as a potential supplementary agent in enhancing differentiation SCs into insulin generating cells.


Assuntos
Células da Medula Óssea , Diferenciação Celular , Células Secretoras de Insulina , Insulina , Células-Tronco Mesenquimais , Vitamina D , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Vitamina D/farmacologia , Vitamina D/metabolismo , Ratos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/citologia , Glucose/metabolismo , Glucose/farmacologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células Cultivadas , Sobrevivência Celular/efeitos dos fármacos , Masculino , Transativadores/metabolismo , Transativadores/genética , Suplementos Nutricionais , Secreção de Insulina/efeitos dos fármacos
12.
Kidney Blood Press Res ; 49(1): 137-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266504

RESUMO

INTRODUCTION: The process of vascular calcification has severe clinical consequences in a number of diseases, including diabetes, atherosclerosis, and end-stage renal disease. In the present study, we investigated the effect of policosanol (Poli), genistein (Gen), and vitamin D (VitD) separately and in association to evaluate the possible synergistic action on inorganic phosphate (Pi)-induced calcification of vascular smooth muscle cells (VSMCs). METHODS: Primary human VSMCs were cultured with either growth medium or growth medium supplemented with calcium and phosphorus (calcification medium) in combination with Poli, Gen, and VitD. Alizarin Red staining, mineralization, and the protein expression of RUNX2 and superoxide dismutase-2 (SOD2) were investigated. RESULTS: All three substances tested were effective at reducing osteogenic differentiation of VSMCs in a dose-dependent manner. Poli+Gen, Poli+VitD, Gen+VitD treatment induced a greater inhibition of calcification and RUNX2 expression compared to single compounds treatments. Moreover, the association of Poli+Gen+VitD (Reduplaxin®) was more effective at inhibiting VSMCs mineralization and preventing the increase in RUNX2 expression induced by calcification medium but not modified SOD2 expression. CONCLUSIONS: The association of Pol, Gen, and VitD (Reduplaxin®) has an additive inhibitory effect on the calcification process of VSMCs induced in vitro by a pro-calcifying medium.


Assuntos
Álcoois Graxos , Genisteína , Músculo Liso Vascular , Calcificação Vascular , Vitamina D , Humanos , Vitamina D/farmacologia , Álcoois Graxos/farmacologia , Células Cultivadas , Calcificação Vascular/prevenção & controle , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Genisteína/farmacologia , Genisteína/uso terapêutico , Superóxido Dismutase/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo
13.
BMC Vet Res ; 20(1): 221, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38783276

RESUMO

BACKGROUND: Limited studies are available on vitamin D supplementation in dogs. This study evaluates the effect of a commercial vitamin D3 supplement on serum 25-hydroxy vitamin D as well as selected biochemical and hematological parameters in healthy dogs. Eight intact male adult dogs with a mean body weight of 20 kg from mixed breeds were included in the study. After adaptation period, dogs received vitamin D3 supplement at the dose of 50 IU/kg body weight per day. Blood samples were collected on days 0, 14, 28 and 42 of supplementation. Food was used for analysis of vitamin D3 content. RESULTS: Significant increase in serum level of 25-hydroxy vitamin D3 was detected since day 14 of supplementation. Changes in serum 25-hydroxy vitamin D3 concentration during time showed an upward significance (p < 0.05). Vitamin D3 content of the food was 2900 IU/kg dry matter. Changes in serum phosphorus levels were upward significant. No dog showed calcium or phosphorus levels above the highest reference level. Liver and kidney parameters remained in the reference range during the experiment. A gradual significant increase was observed in hemoglobin and hematocrit which was started from day 14. Vitamin D3 supplementation had no significant effect on neutrophils, monocytes and lymphocytes percent during the study. CONCLUSIONS: Vitamin D3 supplementation at 50 IU/kg BW daily, increases serum levels of 25-hydroxy vitamin D in healthy dogs fed with a diet containing proper amount of this vitamin. It also increases hemoglobin and hematocrit levels in a time dependent manner without inducing adverse effects.


Assuntos
Colecalciferol , Suplementos Nutricionais , Vitamina D , Animais , Cães/sangue , Masculino , Vitamina D/análogos & derivados , Vitamina D/sangue , Vitamina D/administração & dosagem , Vitamina D/farmacologia , Colecalciferol/farmacologia , Colecalciferol/administração & dosagem , Hematócrito/veterinária , Hemoglobinas/análise , Fósforo/sangue
14.
Nucleic Acids Res ; 50(7): 3745-3763, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35325193

RESUMO

Spatial genome organization is tightly controlled by several regulatory mechanisms and is essential for gene expression control. Nuclear receptors are ligand-activated transcription factors that modulate physiological and pathophysiological processes and are primary pharmacological targets. DNA binding of the important loop-forming insulator protein CCCTC-binding factor (CTCF) was modulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). We performed CTCF HiChIP assays to produce the first genome-wide dataset of CTCF long-range interactions in 1,25(OH)2D3-treated cells, and to determine whether dynamic changes of spatial chromatin interactions are essential for fine-tuning of nuclear receptor signaling. We detected changes in 3D chromatin organization upon vitamin D receptor (VDR) activation at 3.1% of all observed CTCF interactions. VDR binding was enriched at both differential loop anchors and within differential loops. Differential loops were observed in several putative functional roles including TAD border formation, promoter-enhancer looping, and establishment of VDR-responsive insulated neighborhoods. Vitamin D target genes were enriched in differential loops and at their anchors. Secondary vitamin D effects related to dynamic chromatin domain changes were linked to location of downstream transcription factors in differential loops. CRISPR interference and loop anchor deletion experiments confirmed the functional relevance of nuclear receptor ligand-induced adjustments of the chromatin 3D structure for gene expression regulation.


Assuntos
Cromatina , Receptores de Calcitriol , Cromatina/genética , Expressão Gênica , Ligantes , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/metabolismo , Vitamina D/metabolismo , Vitamina D/farmacologia
15.
BMC Pulm Med ; 24(1): 55, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273268

RESUMO

BACKGROUND: Asthma is the most common allergic disease characterized by an inflammatory response in the airways. Mechanismly, urban particulate matter (PM) is the most widely air pollutant associated with increased asthma morbidity and airway inflammation. Current research found that vitamin D is an essential vitamin with anti-inflammatory, antioxidant and other medical efficacy. Inadequate or deficient vitamin D often leads to the pathogenesis and stability of asthma. NGF exacerbates airway inflammation in asthma by promoting smooth muscle cell proliferation and inducing the Th2 immune response. Activation of the Nrf2/HO-1 signaling pathway can exert a protective effect on the inflammatory response in bronchial asthma. However, the specific mechanism of this pathway in PM-involved asthmatic airway smooth muscle cells remains unclear. METHODS: Mice were sensitized and challenged with Ovalbumin (OVA) to establish an asthma model. They were then exposed to either PM, vitamin D or a combination of both, and inflammatory responses were observed. Including, acetylcholine stimulation at different concentrations measured airway hyperresponsiveness in mice. Bronchoalveolar lavage fluid (BALF) and serum were collected for TNF-α, IL-1ß, IL-6, and Nerve growth factor (NGF) analysis. Additionally, lung tissues underwent histopathological examination to observe alveolar structure and inflammatory cell infiltration. Specific ELISA kits were utilized to determine the levels of the inflammatory factors TNF-α, IL-1ß, IL-6, and Nerve growth factor (NGF). Nrf2/HO-1 signaling pathways were examined by western blot analysis. Meanwhile, we constructed a cell system with low HO-1 expression by lentiviral transfection of airway smooth muscle cells. The changes of Nrf2, HO-1, and NGF were observed after the treatment of OVA, PM, and Vit D were given. RESULTS: The in vivo results showed that vitamin D significantly alleviated pathological changes in lung tissue of PM-exposed mice models. Mechanismly, vitamin D decreased substantial inflammatory cell infiltration in lung tissue, as well as the number of inflammatory cells in BALF. Furthermore, vitamin D reduced the heightened inflammatory factors including of TNF-α, IL-1ß, IL-6, and NGF caused by PM exposure, and triggered the activity of nucleus Nrf2 and HO-1 in PM-exposed asthmatic mice. Notably, knockdown HO-1 weakens the Vitamin D- mediated inhibition to pollution toxicity in asthma. Importantly, in vitro experiments on OVA-stimulated mice airway smooth muscle cells, the results showed that OVA and PM, respectively, reduced Nrf2/HO-1 and increased NGF's expression, while vitamin D reversed the process. And in the HO-1 knockdown cell line of Lenti-si-HO-1 ASMCs, OVA and PM reduced Nrf2's expression, while HO-1 and NGF's expression were unchanged. CONCLUSIONS: The above results demastrate that vitamin D downregulated the inflammatory response and the expression of NGF by regulating the Nrf2/HO-1 signaling pathways in airway smooth muscle cells, thereby showing potent anti-inflammatory activity in asthma.


Assuntos
Asma , Material Particulado , Camundongos , Animais , Material Particulado/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Pulmão/patologia , Inflamação , Transdução de Sinais , Líquido da Lavagem Broncoalveolar , Anti-Inflamatórios/farmacologia , Vitaminas/uso terapêutico , Ovalbumina , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Citocinas/metabolismo
16.
Mem Inst Oswaldo Cruz ; 119: e230178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166620

RESUMO

BACKGROUND: The impact of nutrient availability on the survival of Mycobacterium leprae and the development of leprosy remains largely unknown. Iron is essential for the survival and replication of pathogens, while vitamin D has been involved with pathogen elimination and immunoregulation. OBJECTIVES: We evaluated the influence of dietary iron and vitamin D supplementation and restriction on the inflammatory response of mouse immune cells in vitro. METHODS: After 30 days of standard or modified diets, peritoneal cells and splenocytes were stimulated with the alive microorganisms and sonicated antigens of M. leprae, respectively. The production of inflammatory cytokines, reactive oxygen species, and cell proliferation were evaluated. FINDINGS: In peritoneal cells, vitamin D supplementation and iron restriction reduced the production of IL-6 and TNF in response to M. leprae, while splenocytes presented a reduction in TNF production under the same conditions. Lower levels of IFN-γ and TNF were observed in both iron-supplemented and iron-deficient splenocytes. Besides, iron supplementation also reduced the production of IL-6 and IL-10. No changes in the production of reactive oxygen species or in cell proliferation were observed related to different diets. MAIN CONCLUSIONS: Taken together, these data point to an interference of the status of these nutrients on the interaction between the host and M. leprae, with the potential to interfere with the progression of leprosy. Our results highlight the impact of nutritional aspects on this neglected disease, which is significantly associated with unfavourable social conditions.


Assuntos
Citocinas , Mycobacterium leprae , Espécies Reativas de Oxigênio , Baço , Vitamina D , Animais , Mycobacterium leprae/imunologia , Mycobacterium leprae/efeitos dos fármacos , Vitamina D/farmacologia , Vitamina D/administração & dosagem , Baço/imunologia , Camundongos , Citocinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo , Proliferação de Células/efeitos dos fármacos , Suplementos Nutricionais , Feminino , Hanseníase/imunologia , Masculino , Camundongos Endogâmicos BALB C
17.
Zygote ; 32(2): 154-160, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38379192

RESUMO

Infertility affects 15% of all couples worldwide and 50% of cases of infertility are solely due to male factors. A decrease in motility in the semen is considered one of the main factors that is directly related to infertility. The use of supplementation to improve the overall sperm quality has become increasingly popular worldwide. The purpose of this study was to evaluate whether sperm motility was affected by the combination of serotonin (5-HT), selenium (Se), zinc (Zn), and vitamins D, and E supplementation. Semen samples were incubated for 75 min at 37°C in medium containing varying concentrations of 5-HT, Se, Zn, vitamin D, and E. 5-HT (200 µM), Se (2 µg/ml), Zn (10 µg/ml), vitamin D (100 nM), and vitamin E (2 mmol) have also been shown to increase progressive sperm motility. Three different mixtures of supplements were also tested for their combined effects on sperm motility and reactive oxygen species (ROS) production. While the total motility in the control group was 71.96%, this was found to increase to 82.85% in the first mixture. In contrast the average ROS level was 8.97% in the control group and decreased to 4.23% in the first mixture. Inclusion of a supplement cocktail (5-HT, Se, Zn, vitamins D and E) in sperm processing and culture medium could create an overall improvement in sperm motility while decreasing ROS levels during the incubation period. These molecules may enhance the success of assisted reproduction techniques when present in sperm preparation medium.


Assuntos
Espécies Reativas de Oxigênio , Selênio , Serotonina , Motilidade dos Espermatozoides , Espermatozoides , Vitamina D , Vitamina E , Zinco , Motilidade dos Espermatozoides/efeitos dos fármacos , Masculino , Humanos , Serotonina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Zinco/farmacologia , Zinco/administração & dosagem , Selênio/farmacologia , Selênio/administração & dosagem , Vitamina E/farmacologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Espermatozoides/metabolismo , Vitamina D/farmacologia , Suplementos Nutricionais , Adulto
18.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396866

RESUMO

Vitamin D3 (VitD3) plays a crucial role in various cellular functions through its receptor interaction. The biological activity of Vitamin D3 can vary based on its solubility and stability. Thus, the challenge lies in maximizing its biological effects through its complexation within cyclodextrin (ßNS-CDI 1:4) nanosponges (NS) (defined as VitD3NS). Therefore, its activity has been evaluated on two different gut-brain axes (healthy gut/degenerative brain and inflammatory bowel syndrome gut/degenerative brain axis). At the gut level, VitD3-NS mitigated liposaccharide-induced damage (100 ng/mL; for 48 h), restoring viability, integrity, and activity of tight junctions and reducing ROS production, lipid peroxidation, and cytokines levels. Following intestinal transit, VitD3-NS improved the neurodegenerative condition in the healthy axis and the IBS model, suggesting the ability of VitD3-NS to preserve efficacy and beneficial effects even in IBS conditions. In conclusion, this study demonstrates the ability of this novel form of VitD3, named VitD3-NS, to act on the gut-brain axis in healthy and damaged conditions, emphasizing enhanced biological activity through VitD3 complexation, as such complexation increases the beneficial effect of vitamin D3 in both the gut and brain by about 50%.


Assuntos
Colecalciferol , Síndrome do Intestino Irritável , Humanos , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Síndrome do Intestino Irritável/tratamento farmacológico , Eixo Encéfalo-Intestino , Citocinas , Encéfalo , Vitamina D/farmacologia , Vitamina D/uso terapêutico
19.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396804

RESUMO

Unlike other vitamins, vitamin D3 is synthesised in skin cells in the body. Vitamin D3 has been known as a bone-related hormone. Recently, however, it has been considered as an immune vitamin. Vitamin D3 deficiency influences the onset of a variety of diseases. Vitamin D3 regulates the production of proinflammatory cytokines such as tumour necrosis factor-α (TNF-α) through binding to vitamin D receptors (VDRs) in immune cells. Since blood levels of vitamin D3 (25-OH-D3) were low in coronavirus disease 2019 (COVID-19) patients, there has been growing interest in the importance of vitamin D3 to maintaining a healthy condition. On the other hand, phytochemicals are compounds derived from plants with over 7000 varieties and have various biological activities. They mainly have health-promoting effects and are classified as terpenoids, carotenoids, flavonoids, etc. Flavonoids are known as the anti-inflammatory compounds that control TNF-α production. Chronic inflammation is induced by the continuous production of TNF-α and is the fundamental cause of diseases like obesity, dyslipidaemia, diabetes, heart and brain diseases, autoimmune diseases, Alzheimer's disease, and cancer. In addition, the ageing process is induced by chronic inflammation. This review explains the cooperative effects of vitamin D3 and phytochemicals in the suppression of inflammatory responses, how it balances the natural immune response, and its link to anti-ageing effects. In addition, vitamin D3 and phytochemicals synergistically contribute to anti-ageing by working with ageing-related genes. Furthermore, prevention of ageing processes induced by the chronic inflammation requires the maintenance of healthy gut microbiota, which is related to daily dietary habits. In this regard, supplementation of vitamin D3 and phytochemicals plays an important role. Recently, the association of the prevention of the non-disease condition called "ME-BYO" with the maintenance of a healthy condition has been an attractive regimen, and the anti-ageing effect discussed here is important for a healthy and long life.


Assuntos
Colecalciferol , Fator de Necrose Tumoral alfa , Humanos , Colecalciferol/farmacologia , Envelhecimento , Flavonoides , Inflamação/prevenção & controle , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Vitamina D/farmacologia
20.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396638

RESUMO

The study of intercellular adhesion molecule-1 (ICAM-1) and SIRT1, a member of the sirtuin family with nitric oxide (NO), is emerging in depression and anxiety. As with all antidepressants, the efficacy is delayed and inconsistent. Ascorbic acid (AA) and vitamin D (D) showed antidepressant properties, while etifoxine (Etx), a GABAA agonist, alleviates anxiety symptoms. The present study aimed to investigate the potential augmentation of citalopram using AA, D and Etx and related the antidepressant effect to brain and serum ICAM-1, SIRT1 and NO in an animal model. BALB/c mice were divided into naive, control, citalopram, citalopram + etx, citalopram + AA, citalopram + D and citalopram + etx + AA + D for 7 days. On the 8th day, the mice were restrained for 8 h, followed by a forced swim test and marble burying test before scarification. Whole-brain and serum expression of ICAM-1, Sirt1 and NO were determined. Citalopram's antidepressant and sedative effects were potentiated by ascorbic acid, vitamin D and etifoxine alone and in combination (p < 0.05), as shown by the decreased floating time and rearing frequency. Brain NO increased significantly (p < 0.05) in depression and anxiety and was associated with an ICAM-1 increase versus naive (p < 0.05) and a Sirt1 decrease (p < 0.05) versus naive. Both ICAM-1 and Sirt1 were modulated by antidepressants through a non-NO-dependent pathway. Serum NO expression was unrelated to serum ICAM-1 and Sirt1. Brain ICAM-1, Sirt1 and NO are implicated in depression and are modulated by antidepressants.


Assuntos
Ansiedade , Citalopram , Depressão , Óxido Nítrico , Oxazinas , Animais , Camundongos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Citalopram/farmacologia , Citalopram/uso terapêutico , Depressão/tratamento farmacológico , Molécula 1 de Adesão Intercelular , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Sirtuína 1 , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Vitaminas , Quimioterapia Combinada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA