Your browser doesn't support javascript.
loading
Bite force and cranial bone strain in four species of lizards.
Ross, Callum F; Porro, Laura B; Herrel, Anthony; Evans, Susan E; Fagan, Michael J.
Affiliation
  • Ross CF; Organismal Biology & Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA rossc@uchicago.edu.
  • Porro LB; School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
  • Herrel A; Sorbonne Universités, Département Adaptations du Vivant, UMR 7179, C.N.R.S./M.N.H.N., 75005 Paris, France.
  • Evans SE; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
  • Fagan MJ; School of Engineering and Computer Science, University of Hull, Hull HU6 7RX, UK.
J Exp Biol ; 221(Pt 23)2018 12 04.
Article in En | MEDLINE | ID: mdl-30352826
ABSTRACT
In vivo bone strain data provide direct evidence of strain patterns in the cranium during biting. Compared with those in mammals, in vivo bone strains in lizard skulls are poorly documented. This paper presents strain data from the skulls of Anolis equestris, Gekko gecko, Iguana iguana and Salvator merianae during transducer biting. Analysis of variance was used to investigate effects of bite force, bite point, diet, cranial morphology and cranial kinesis on strain magnitude. Within individuals, the most consistent determinants of variance in bone strain magnitude were gauge location and bite point, with the importance of bite force varying between individuals. Inter-site variance in strain magnitude - strain gradient - was present in all individuals and varied with bite point. Between individuals within species, variance in strain magnitude was driven primarily by variation in bite force, not gauge location or bite point, suggesting that inter-individual variation in patterns of strain magnitude is minimal. Between species, variation in strain magnitude was significantly impacted by bite force and species membership, as well as by interactions between gauge location, species and bite point. Independent of bite force, species differences in cranial strain magnitude may reflect selection for different cranial morphology in relation to feeding function, but what these performance criteria are is not clear. The relatively low strain magnitudes in Iguana and Uromastyx compared with those in other lizards may be related to their herbivorous diet. Cranial kinesis and the presence or absence of postorbital and supratemporal bars are not important determinants of inter-specific variation in strain magnitude.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Skull / Bite Force / Lizards Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Exp Biol Year: 2018 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Skull / Bite Force / Lizards Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Exp Biol Year: 2018 Type: Article Affiliation country: United States