Your browser doesn't support javascript.
loading
Structural snapshots of TRPV1 reveal mechanism of polymodal functionality.
Zhang, Kaihua; Julius, David; Cheng, Yifan.
Affiliation
  • Zhang K; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
  • Julius D; Department of Physiology, University of California, San Francisco, San Francisco, CA, USA. Electronic address: david.julius@ucsf.edu.
  • Cheng Y; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA. Electronic address: yifan.cheng@ucsf.edu.
Cell ; 184(20): 5138-5150.e12, 2021 09 30.
Article in En | MEDLINE | ID: mdl-34496225
ABSTRACT
Many transient receptor potential (TRP) channels respond to diverse stimuli and conditionally conduct small and large cations. Such functional plasticity is presumably enabled by a uniquely dynamic ion selectivity filter that is regulated by physiological agents. What is currently missing is a "photo series" of intermediate structural states that directly address this hypothesis and reveal specific mechanisms behind such dynamic channel regulation. Here, we exploit cryoelectron microscopy (cryo-EM) to visualize conformational transitions of the capsaicin receptor, TRPV1, as a model to understand how dynamic transitions of the selectivity filter in response to algogenic agents, including protons, vanilloid agonists, and peptide toxins, permit permeation by small and large organic cations. These structures also reveal mechanisms governing ligand binding substates, as well as allosteric coupling between key sites that are proximal to the selectivity filter and cytoplasmic gate. These insights suggest a general framework for understanding how TRP channels function as polymodal signal integrators.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: TRPV Cation Channels Limits: Humans Language: En Journal: Cell Year: 2021 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: TRPV Cation Channels Limits: Humans Language: En Journal: Cell Year: 2021 Type: Article Affiliation country: United States