Your browser doesn't support javascript.
loading
circRNA Acbd6 promotes neural stem cell differentiation into cholinergic neurons via the miR-320-5p-Osbpl2 axis.
Li, Wen; Shan, Boquan; Cheng, Xiang; He, Hui; Qin, Jianbing; Zhao, Heyan; Tian, Meiling; Zhang, Xinhua; Jin, Guohua.
Affiliation
  • Li W; Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong Un
  • Shan B; Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong Un
  • Cheng X; Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong Un
  • He H; Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong Un
  • Qin J; Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong Un
  • Zhao H; Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong Un
  • Tian M; Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong Un
  • Zhang X; Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong Un
  • Jin G; Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong Un
J Biol Chem ; 298(4): 101828, 2022 04.
Article in En | MEDLINE | ID: mdl-35305988
ABSTRACT
Neural stem cells (NSCs) persist in the dentate gyrus of the hippocampus into adulthood and are essential for both neurogenesis and neural circuit integration. Exosomes have also been shown to play vital roles in regulating biological processes of receptor cells as a medium for cell-to-cell communication signaling molecules. The precise molecular mechanisms of exosome-mediated signaling, however, remain largely unknown. Here, we found that exosomes produced by denervated hippocampi following fimbria-fornix transection could promote the differentiation of hippocampal neural precursor cells into cholinergic neurons in coculture with NSCs. Furthermore, we found that 14 circular RNAs (circRNAs) were upregulated in hippocampal exosomes after fimbria-fornix transection using high-throughput RNA-Seq technology. We further characterized the function and mechanism by which the upregulated circRNA Acbd6 (acyl-CoA-binding domain-containing 6) promoted the differentiation of NSCs into cholinergic neurons using RT-quantitative PCR, Western blot, ELISA, flow cytometry, immunohistochemistry, and immunofluorescence assay. By luciferase reporter assay, we demonstrated that circAcbd6 functioned as an endogenous miR-320-5p sponge to inhibit miR-320-5p activity, resulting in increased oxysterol-binding protein-related protein 2 expression with subsequent facilitation of NSC differentiation. Taken together, our results suggest that circAcbd6 promotes differentiation of NSCs into cholinergic neurons via miR-320-5p/oxysterol-binding protein-related protein 2 axis, which contribute important insights to our understanding of how circRNAs regulate neurogenesis.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Receptors, Steroid / Cell Differentiation / MicroRNAs / Neural Stem Cells / Cholinergic Neurons / RNA, Circular Limits: Animals Language: En Journal: J Biol Chem Year: 2022 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Receptors, Steroid / Cell Differentiation / MicroRNAs / Neural Stem Cells / Cholinergic Neurons / RNA, Circular Limits: Animals Language: En Journal: J Biol Chem Year: 2022 Type: Article