Your browser doesn't support javascript.
loading
Nuclear moments of indium isotopes reveal abrupt change at magic number 82.
Vernon, A R; Garcia Ruiz, R F; Miyagi, T; Binnersley, C L; Billowes, J; Bissell, M L; Bonnard, J; Cocolios, T E; Dobaczewski, J; Farooq-Smith, G J; Flanagan, K T; Georgiev, G; Gins, W; de Groote, R P; Heinke, R; Holt, J D; Hustings, J; Koszorús, Á; Leimbach, D; Lynch, K M; Neyens, G; Stroberg, S R; Wilkins, S G; Yang, X F; Yordanov, D T.
Affiliation
  • Vernon AR; School of Physics and Astronomy, The University of Manchester, Manchester, UK. vernona@mit.edu.
  • Garcia Ruiz RF; Massachusetts Institute of Technology, Cambridge, MA, USA. vernona@mit.edu.
  • Miyagi T; Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium. vernona@mit.edu.
  • Binnersley CL; Massachusetts Institute of Technology, Cambridge, MA, USA. rgarciar@mit.edu.
  • Billowes J; Experimental Physics Department, CERN, Geneva, Switzerland. rgarciar@mit.edu.
  • Bissell ML; TRIUMF, Vancouver, British Columbia, Canada.
  • Bonnard J; School of Physics and Astronomy, The University of Manchester, Manchester, UK.
  • Cocolios TE; School of Physics and Astronomy, The University of Manchester, Manchester, UK.
  • Dobaczewski J; School of Physics and Astronomy, The University of Manchester, Manchester, UK.
  • Farooq-Smith GJ; Department of Physics, University of York, Heslington, York, UK.
  • Flanagan KT; Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium.
  • Georgiev G; Department of Physics, University of York, Heslington, York, UK.
  • Gins W; Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
  • de Groote RP; Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium.
  • Heinke R; School of Physics and Astronomy, The University of Manchester, Manchester, UK.
  • Holt JD; Photon Science Institute, The University of Manchester, Manchester, UK.
  • Hustings J; IJCLab, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.
  • Koszorús Á; Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium.
  • Leimbach D; Department of Physics, University of Jyväskylä, Jyväskylä, Finland.
  • Lynch KM; Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium.
  • Neyens G; Department of Physics, University of Jyväskylä, Jyväskylä, Finland.
  • Stroberg SR; Experimental Physics Department, CERN, Geneva, Switzerland.
  • Wilkins SG; Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
  • Yang XF; TRIUMF, Vancouver, British Columbia, Canada.
  • Yordanov DT; Department of Physics, McGill University, Montréal, Québec, Canada.
Nature ; 607(7918): 260-265, 2022 07.
Article in En | MEDLINE | ID: mdl-35831598
ABSTRACT
In spite of the high-density and strongly correlated nature of the atomic nucleus, experimental and theoretical evidence suggests that around particular 'magic' numbers of nucleons, nuclear properties are governed by a single unpaired nucleon1,2. A microscopic understanding of the extent of this behaviour and its evolution in neutron-rich nuclei remains an open question in nuclear physics3-5. The indium isotopes are considered a textbook example of this phenomenon6, in which the constancy of their electromagnetic properties indicated that a single unpaired proton hole can provide the identity of a complex many-nucleon system6,7. Here we present precision laser spectroscopy measurements performed to investigate the validity of this simple single-particle picture. Observation of an abrupt change in the dipole moment at N = 82 indicates that, whereas the single-particle picture indeed dominates at neutron magic number N = 82 (refs. 2,8), it does not for previously studied isotopes. To investigate the microscopic origin of these observations, our work provides a combined effort with developments in two complementary nuclear many-body

methods:

ab initio valence-space in-medium similarity renormalization group and density functional theory (DFT). We find that the inclusion of time-symmetry-breaking mean fields is essential for a correct description of nuclear magnetic properties, which were previously poorly constrained. These experimental and theoretical findings are key to understanding how seemingly simple single-particle phenomena naturally emerge from complex interactions among protons and neutrons.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nature Year: 2022 Type: Article Affiliation country: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nature Year: 2022 Type: Article Affiliation country: United kingdom