Your browser doesn't support javascript.
loading
Structural confirmation of position isomers 2-(2-methylaminoprolyl)benzofuran and 5-(2-methylaminopropyl)benzofuran: a combined mass spectrometric and computational study.
Xu, Yu; Lin, Xin; Chen, Xianxin; Ke, Xing; Wu, Hao; Fan, Yi Lei; Zhou, Jing; Xu, Jiawei.
Affiliation
  • Xu Y; Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Narcotic Laboratory Zhejiang Regional Center, Hangzhou, Zhejiang, P. R. China.
  • Lin X; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, P. R. China.
  • Chen X; School of Chemical Science, University of Chinese Academy of Sciences, Beijing, P. R. China.
  • Ke X; Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Narcotic Laboratory Zhejiang Regional Center, Hangzhou, Zhejiang, P. R. China.
  • Wu H; Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, Zhejiang, P. R. China.
  • Fan YL; Dian Regional Forensic Science Institute, Hangzhou, Zhejiang, P. R. China.
  • Zhou J; Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, Zhejiang, P. R. China.
  • Xu J; College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.
Rapid Commun Mass Spectrom ; 38(4): e9688, 2024 Feb 28.
Article in En | MEDLINE | ID: mdl-38212651
ABSTRACT
RATIONALE Phenylethylamines are one of the most common types of new psychoactive substances, following synthetic cannabinoids and synthetic cathinones. They are regulated in many countries because of their strong hallucinogenic effects, which can cause serious nerve damage. There is a wide variety of phenylethylamines, exhibiting rapid renewal and extremely similar structures, therefore accurate qualitative analysis of isomers is a difficult problem in current drug analysis.

METHODS:

The dissociation pathways of the position isomers 2-(2-methylaminoprolyl)benzofuran (2-MAPB) and 5-(2-methylaminopropyl)benzofuran (5-MAPB) were investigated by gas chromatography-mass spectrometry and liquid chromatography coupled to high-resolution quadrupole Orbitrap MS. The dissociation patterns of the phenethylamine-based designer drugs 2-MAPB and 5-MAPB were explored and extended in this work based on MS combined with density functional theory studies.

RESULTS:

For electron ionization mass spectrometry (EI-MS) analysis, the dissociation patterns of 2-MAPB were similar to those of 5-MAPB. For electrospray ionization mass spectrometry (ESI-MSn ) analysis, the hydrogen atom on amino group was facile to form a intramolecular hydrogen bond with the oxygen atom on the parent nucleus of benzofuran in the structure of 2-MAPB, leading to higher abundance of the product ion at m/z 58. However, there was a conjugated system between the positive charge formed by the cleavage of the 5-MAPB side chain and the benzofuran ring, enabling the 5-MAPB to generate a product ion at m/z 131. Computational study showed that energy barrier and spin density difference distribution jointly control the selective dissociation in EI-MS, while different types of orbital interaction induced by intramolecular hydrogen bond led to different dissociation results in ESI-MSn .

CONCLUSIONS:

These different dissociation patterns could be used to distinguish 2-MAPB from 5-MAPB. This could assist forensic laboratories in the differentiation and characterization of potential isomers in these kinds of compounds, especially in mixtures.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Qualitative_research Language: En Journal: Rapid Commun Mass Spectrom Year: 2024 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Qualitative_research Language: En Journal: Rapid Commun Mass Spectrom Year: 2024 Type: Article