Your browser doesn't support javascript.
loading
Highly Crystalline Iridium-Nickel Nanocages with Subnanopores for Acidic Bifunctional Water Splitting Electrolysis.
Ding, Hui; Su, Caijie; Wu, Jiabao; Lv, Haifeng; Tan, Yi; Tai, Xiaolin; Wang, Wenjie; Zhou, Tianpei; Lin, Yue; Chu, Wangsheng; Wu, Xiaojun; Xie, Yi; Wu, Changzheng.
Affiliation
  • Ding H; Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anh
  • Su C; Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anh
  • Wu J; School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China.
  • Lv H; School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China.
  • Tan Y; Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anh
  • Tai X; Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anh
  • Wang W; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui Province 230029, P. R. China.
  • Zhou T; Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anh
  • Lin Y; Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anh
  • Chu W; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui Province 230029, P. R. China.
  • Wu X; School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China.
  • Xie Y; Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anh
  • Wu C; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province 230031, P. R. China.
J Am Chem Soc ; 146(11): 7858-7867, 2024 Mar 20.
Article in En | MEDLINE | ID: mdl-38457662
ABSTRACT
Developing efficient bifunctional materials is highly desirable for overall proton membrane water splitting. However, the design of iridium materials with high overall acidic water splitting activity and durability, as well as an in-depth understanding of the catalytic mechanism, is challenging. Herein, we successfully developed subnanoporous Ir3Ni ultrathin nanocages with high crystallinity as bifunctional materials for acidic water splitting. The subnanoporous shell enables Ir3Ni NCs optimized exposure of active sites. Importantly, the nickel incorporation contributes to the favorable thermodynamics of the electrocatalysis of the OER after surface reconstruction and optimized hydrogen adsorption free energy in HER electrocatalysis, which induce enhanced intrinsic activity of the acidic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Together, the Ir3Ni nanocages achieve 3.72 A/mgIr(η=350 mV) and 4.47 A/mgIr(η=40 mV) OER and HER mass activity, which are 18.8 times and 3.3 times higher than that of commercial IrO2 and Pt, respectively. In addition, their highly crystalline identity ensures a robust nanostructure, enabling good catalytic durability during the oxygen evolution reaction after surface oxidation. This work provides a new revenue toward the structural design and insightful understanding of metal alloy catalytic mechanisms for the bifunctional acidic water splitting electrocatalysis.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Am Chem Soc Year: 2024 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Am Chem Soc Year: 2024 Type: Article