Your browser doesn't support javascript.
loading
NRF2 activation by cysteine as a survival mechanism for triple-negative breast cancer cells.
Bottoni, Laura; Minetti, Alberto; Realini, Giulia; Pio, Elena; Giustarini, Daniela; Rossi, Ranieri; Rocchio, Chiara; Franci, Lorenzo; Salvini, Laura; Catona, Orazio; D'Aurizio, Romina; Rasa, Mahdi; Giurisato, Emanuele; Neri, Francesco; Orlandini, Maurizio; Chiariello, Mario; Galvagni, Federico.
Affiliation
  • Bottoni L; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
  • Minetti A; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
  • Realini G; Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
  • Pio E; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
  • Giustarini D; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
  • Rossi R; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
  • Rocchio C; Center for Colloid and Surface Science (CSGI), University of Florence, Sesto Fiorentino, 50019, Florence, Italy.
  • Franci L; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
  • Salvini L; Center for Colloid and Surface Science (CSGI), University of Florence, Sesto Fiorentino, 50019, Florence, Italy.
  • Catona O; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
  • D'Aurizio R; Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR) and Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100, Siena, Italy.
  • Rasa M; Toscana Life Sciences Foundation, Siena, Italy.
  • Giurisato E; Institute of Informatics and Telematics (IIT), CNR, Pisa, Italy.
  • Neri F; Institute of Informatics and Telematics (IIT), CNR, Pisa, Italy.
  • Orlandini M; Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
  • Chiariello M; Institute of Immunology, University Medical Center Schleswig-Holstein, Kiel, Germany.
  • Galvagni F; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
Oncogene ; 43(22): 1701-1713, 2024 May.
Article in En | MEDLINE | ID: mdl-38600165
ABSTRACT
Triple-negative breast cancer (TNBC) is a very aggressive and heterogeneous group of tumors. In order to develop effective therapeutic strategies, it is therefore essential to identify the subtype-specific molecular mechanisms underlying disease progression and resistance to chemotherapy. TNBC cells are highly dependent on exogenous cystine, provided by overexpression of the cystine/glutamate antiporter SLC7A11/xCT, to fuel glutathione synthesis and promote an oxidative stress response consistent with their high metabolic demands. Here we show that TNBC cells of the mesenchymal stem-like subtype (MSL) utilize forced cystine uptake to induce activation of the transcription factor NRF2 and promote a glutathione-independent mechanism to defend against oxidative stress. Mechanistically, we demonstrate that NRF2 activation is mediated by direct cysteinylation of the inhibitor KEAP1. Furthermore, we show that cystine-mediated NRF2 activation induces the expression of important genes involved in oxidative stress response, but also in epithelial-to-mesenchymal transition and stem-like phenotype. Remarkably, in survival analysis, four upregulated genes (OSGIN1, RGS17, SRXN1, AKR1B10) are negative prognostic markers for TNBC. Finally, expression of exogenous OSGIN1, similarly to expression of exogenous NRF2, can prevent cystine depletion-dependent death of MSL TNBC cells. The results suggest that the cystine/NRF2/OSGIN1 axis is a potential target for effective treatment of MSL TNBCs.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oxidative Stress / NF-E2-Related Factor 2 / Triple Negative Breast Neoplasms Limits: Female / Humans Language: En Journal: Oncogene Journal subject: BIOLOGIA MOLECULAR / NEOPLASIAS Year: 2024 Type: Article Affiliation country: Italy

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oxidative Stress / NF-E2-Related Factor 2 / Triple Negative Breast Neoplasms Limits: Female / Humans Language: En Journal: Oncogene Journal subject: BIOLOGIA MOLECULAR / NEOPLASIAS Year: 2024 Type: Article Affiliation country: Italy