Your browser doesn't support javascript.
loading
Identification of 1,3,8-Triazaspiro[4.5]Decane-2,4-Dione Derivatives as a Novel δ Opioid Receptor-Selective Agonist Chemotype.
Meqbil, Yazan J; Aguilar, Jhoan; Blaine, Arryn T; Chen, Lan; Cassell, Robert J; Pradhan, Amynah A; van Rijn, Richard M.
Affiliation
  • Meqbil YJ; Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Instit
  • Aguilar J; Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Instit
  • Blaine AT; Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Instit
  • Chen L; Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Instit
  • Cassell RJ; Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Instit
  • Pradhan AA; Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Instit
  • van Rijn RM; Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Instit
J Pharmacol Exp Ther ; 389(3): 301-309, 2024 05 21.
Article in En | MEDLINE | ID: mdl-38621994
ABSTRACT
δ opioid receptors (DORs) hold potential as a target for neurologic and psychiatric disorders, yet no DOR agonist has proven efficacious in critical phase II clinical trials. The exact reasons for the failure to produce quality drug candidates for the DOR are unclear. However, it is known that certain DOR agonists can induce seizures and exhibit tachyphylaxis. Several studies have suggested that those adverse effects are more prevalent in delta agonists that share the (+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80)/4-[(αR*)-α-((2S*,5R*)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl]-N,N-diethylbenzamide chemotype. There is a need to find novel lead candidates for drug development that have improved pharmacological properties to differentiate them from the current failed delta agonists. Our objective in this study was to identify novel DOR agonists. We used a ß-arrestin assay to screen a small G-protein coupled receptors (GPCR)-focused chemical library. We identified a novel chemotype of DOR agonists that appears to bind to the orthosteric site based of docking and molecular dynamic simulation. The most potent agonist hit compound is selective for the DOR over a panel of 167 other GPCRs, is slightly biased toward G-protein signaling and has anti-allodynic efficacy in a complete Freund's adjuvant model of inflammatory pain in C57BL/6 male and female mice. The newly discovered chemotype contrasts with molecules like SNC80 that are highly efficacious ß-arrestin recruiters and may suggest this novel class of DOR agonists could be expanded on to develop a clinical candidate drug. SIGNIFICANCE STATEMENT δ opioid receptors are a clinical target for various neurological disorders, including migraine and chronic pain. Many of the clinically tested delta opioid agonists share a single chemotype, which carries risks during drug development. Through a small-scale high-throughput screening assay, this study identified a novel δ opioid receptor agonist chemotype, which may serve as alternative for the current analgesic clinical candidates.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Receptors, Opioid, delta Limits: Animals / Humans / Male Language: En Journal: J Pharmacol Exp Ther Year: 2024 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Receptors, Opioid, delta Limits: Animals / Humans / Male Language: En Journal: J Pharmacol Exp Ther Year: 2024 Type: Article