Your browser doesn't support javascript.
loading
Design, synthesis, biological evaluation and molecular docking studies of quinoline-anthranilic acid hybrids as potent anti-inflammatory drugs.
Siddique, Sidra; Hussain, Khalid; Shehzadi, Naureen; Arshad, Muhammad; Arshad, Muhammad Nadeem; Iftikhar, Sadaf; Saghir, Farhat; Shaukat, Ayisha; Sarfraz, Muhammad; Ahmed, Nisar.
Affiliation
  • Siddique S; Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan.
  • Hussain K; Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan.
  • Shehzadi N; Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan. khalid.hussain@pharm.uol.edu.pk.
  • Arshad M; Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan.
  • Arshad MN; Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan. muhammad.arshad@iub.edu.pk.
  • Iftikhar S; Chemistry Department, Faculty of Science, and Center of Excellence for Advanced Material Research, King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia.
  • Saghir F; Department of Pharmacy, University of South Asia, Lahore, Pakistan.
  • Shaukat A; Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan.
  • Sarfraz M; Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan. khalid.hussain@pharm.uol.edu.pk.
  • Ahmed N; Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan.
Org Biomol Chem ; 22(18): 3708-3724, 2024 05 08.
Article in En | MEDLINE | ID: mdl-38639206
ABSTRACT
Despite the high global prevalence, rheumatoid arthritis lacks a satisfactory treatment. Hence, the present study is undertaken to design and synthesize novel anti-inflammatory compounds. For this, quinoline and anthranilic acid, two medicinally-privileged moieties, were linked by pharmacophore hybridization, and following their computational assessments, three hybrids 5a-c were synthesized in good over all yields. The in vitro and in vivo anti-inflammatory potential of these hybrids was determined by anti-denaturation and anti-proteinase, and carrageenan-induced paw edema models. The computational studies of these hybrids revealed their drug-likeness, optimum pharmacokinetics, and less toxicity. Moreover, they demonstrated high binding affinity (-9.4 to -10.6 kcal mol-1) and suitable binding interactions for TNF-α, FLAP, and COX-II. A three-step synthetic route resulted in the hybrids 5a-c with 83-86% yield of final step. At 50 µg mL-1, the antiprotease and anti-denaturation activity of compound 5b was significantly higher than 5a and 5c. Furthermore, 5b significantly reduced the edema in the right paw of the rats that received carrageenan. The results of this study indicate the medicinal worth of the novel hybrids in treating inflammatory disorders such as rheumatoid arthritis.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Quinolines / Drug Design / Edema / Ortho-Aminobenzoates / Molecular Docking Simulation Limits: Animals Language: En Journal: Org Biomol Chem Journal subject: BIOQUIMICA / QUIMICA Year: 2024 Type: Article Affiliation country: Pakistan

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Quinolines / Drug Design / Edema / Ortho-Aminobenzoates / Molecular Docking Simulation Limits: Animals Language: En Journal: Org Biomol Chem Journal subject: BIOQUIMICA / QUIMICA Year: 2024 Type: Article Affiliation country: Pakistan