Your browser doesn't support javascript.
loading
Sustainable treatment of aquaculture water employing fungi-microalgae consortium: Nutrients removal enhancement, bacterial communities optimization, emerging contaminants elimination, and mechanism analysis.
Mi, Rui; Wang, Xuda; Dong, Ying; Li, Shilei; Zhao, Zelong; Guan, Xiaoyan; Jiang, Jingwei; Gao, Shan; Fu, Zhiyu; Zhou, Zunchun.
Affiliation
  • Mi R; Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
  • Wang X; Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
  • Dong Y; Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
  • Li S; Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
  • Zhao Z; Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
  • Guan X; Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
  • Jiang J; Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
  • Gao S; Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
  • Fu Z; Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
  • Zhou Z; Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture And Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China. Electronic address: zunchun
Sci Total Environ ; 929: 172600, 2024 Jun 15.
Article in En | MEDLINE | ID: mdl-38653416
ABSTRACT
Fungi-microalgae consortium (FMC) has emerged as a promising system for advanced wastewater treatment due to its high biomass yield and environmental sustainability. This study aimed to investigate the nutrients removal, bacterial community shift, emerging contaminants elimination, and treatment mechanism of a FMC composed of Cordyceps militaris and Navicula seminulum for aquaculture pond water treatment. The fungi and microalgae were cultured and employed either alone or in combination to evaluate the treatment performance. The results demonstrated that the FMC could improve water quality more significantly by reducing nutrient pollutants and optimizing the bacterial community structures. Furthermore, it exhibited stronger positive correlation between the enrichment of functional bacteria for water quality improvement and pollutants removal performance than the single-species treatments. Moreover, the FMC outperformed other groups in eliminating emerging contaminants such as heavy metals, antibiotics, and pathogenic Vibrios. Superiorly, the FMC also showed excellent symbiotic interactions and cooperative mechanisms for pollutants removal. The results collectively corroborated the feasibility and sustainability of using C. militaris and N. seminulum for treating aquaculture water, and the FMC would produce more mutualistic benefits and synergistic effects than single-species treatments.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Pollutants, Chemical / Waste Disposal, Fluid / Aquaculture / Microalgae Language: En Journal: Sci Total Environ Year: 2024 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Pollutants, Chemical / Waste Disposal, Fluid / Aquaculture / Microalgae Language: En Journal: Sci Total Environ Year: 2024 Type: Article