Your browser doesn't support javascript.
loading
Chemoenzymatic Dynamic Kinetic Resolution Protocol with an Immobilized Oxovanadium as a Racemization Catalyst.
Chen, Jiarui; Min, Lingqin; Meng, Fanxu; Fu, Yiwen; Liu, Junhong; Zhang, Yuanyuan.
Affiliation
  • Chen J; Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao 266042, China.
  • Min L; Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao 266042, China.
  • Meng F; Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao 266042, China.
  • Fu Y; Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao 266042, China.
  • Liu J; Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao 266042, China.
  • Zhang Y; Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao 266042, China.
J Org Chem ; 89(10): 6694-6703, 2024 May 17.
Article in En | MEDLINE | ID: mdl-38695196
ABSTRACT
An excellent compatible and cost-effective dynamic kinetic resolution (DKR) protocol has been developed by combining a novel immobilized oxovanadium racemization catalyst onto cheap diatomite (V-D) with an immobilized lipase LA resolution catalyst onto a macroporous resin (LA-MR). V-D was prepared via grinding immobilization, which may become a promising alternative for the immobilization of metals, especially precious metals due to its low cost, high efficiency, easy separation, and large reaction interface. The DKR afforded high yield (96.1%), e.e. (98.67%), and Sel (98.28%) under optimal conditions established using response surface methodology as follows the amount of V-D 10.83 mg, reaction time 51.2 h, and temperature 48.1 °C, respectively, indicating that all the reactions in the DKR were coordinated very well. The DKR protocol was also found to have high stability up to six reuses. V-D exhibited excellent compatibility with LA-MR because the lipase immobilized onto MR did not physically contact with the vanadium species immobilized onto diatomite, thus avoiding inactivation. Considering that lipase, oxovanadium, diatomite, and MR used are relatively inexpensive, and the adsorption or grinding immobilization is simple, the LA-V-MD DKR by coupling LA-MR with V-D is a cost-effective and promising protocol for chiral secondary alcohols.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Org Chem Year: 2024 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Org Chem Year: 2024 Type: Article Affiliation country: China