Your browser doesn't support javascript.
loading
Associations between long-term ambient PM2.5 exposure and the incidence of cardiopulmonary diseases and diabetes, attributable years lived with disability, and policy implication.
Chen, Chu-Chih; Wang, Yin-Ru; Liu, Jih-Shin; Chang, Hsing-Yi; Chen, Pau-Chung.
Affiliation
  • Chen CC; Institute of Population Health Sciences, National Health Research Institutes, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Taiwan. Electronic address: ccchen@nhri.edu.tw.
  • Wang YR; Institute of Population Health Sciences, National Health Research Institutes, Taiwan.
  • Liu JS; Institute of Population Health Sciences, National Health Research Institutes, Taiwan.
  • Chang HY; Institute of Population Health Sciences, National Health Research Institutes, Taiwan.
  • Chen PC; Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taiwan; Institute of Environmental and Occupational Health Sciences, School of Public Health, National Taiwan University, Taiwan; National Institute of Environmental Health S
Ecotoxicol Environ Saf ; 282: 116688, 2024 Jul 05.
Article in En | MEDLINE | ID: mdl-38971102
ABSTRACT
Long-term exposure to ambient PM2.5 is known associated with cardiovascular and respiratory health effects. However, the heterogeneous concentrationresponse function (CRF) between PM2.5 exposure across different concentration range and cardiopulmonary disease and diabetes mellitus (DM) incidence, and their implications on attributable years lived with disability (YLD) and regulation policy has not been well-studied. In this retrospective longitudinal cohort study, disease-free participants (approximately 170,000 individuals, aged ≥ 30 years) from the MJ Health Database were followed up (2007-2017) regarding incidents of coronary heart disease (CHD), ischemic stroke, chronic obstructive pulmonary disease (COPD), lower respiratory tract infections (LRIs), and DM. We used a time-dependent nonlinear weight-transformation Cox regression model for the CRF with an address-matched 3-year mean PM2.5 exposure estimate. Town/district-specific PM2.5-attributable YLD were calculated by multiplying the disease incidence rate, population attributable fraction, disability weight, and sex-age group specific subpopulation for each disease separately. The estimated CRFs for cardiopulmonary diseases were heterogeneously with the hazard ratios (HRs) increased rapidly for CHD and ischemic stroke at PM2.5 concentration lower than 10 µg/m3, whereas the HRs for DM (LRIs) increased with PM2.5 higher than 15 (20) µg/m3. Women had higher HRs for ischemic stroke and DM but not CHD. Relative to the lowest observed PM2.5 concentration of 6 µg/m3 of the study population, the PM2.5 level with an extra risk of 0.1 % (comparable to the disease incidence) for CHD, ischemic stroke, DM, and LRIs were 8.59, 11.85, 22.09, and 24.23 µg/m3, respectively. The associated attributable YLD decreased by 51.4 % with LRIs reduced most (83.6 %), followed by DM (63.7 %) as a result of PM2.5 concentration reduction from 26.10 to 16.82 µg/m3 during 2011-2019 in Taiwan. The proportion of YLD due to CHD and ischemic stroke remained dominant (56.4 %-69.9 %). The cost-benefit analysis for the tradeoff between avoidable YLD and mitigation cost suggested an optimal PM2.5 exposure level at 12 µg/m3. CRFs for cardiopulmonary diseases, attributable YLD, and regulation level, may vary depending on the national/regional background and spatial distribution of PM2.5 concentrations, as well as demographic characteristics.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Ecotoxicol Environ Saf Year: 2024 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Ecotoxicol Environ Saf Year: 2024 Type: Article