Your browser doesn't support javascript.
loading
Space-time Trade-offs for the LCP Array of Wheeler DFAs.
Cotumaccio, Nicola; Gagie, Travis; Köppl, Dominik; Prezza, Nicola.
Affiliation
  • Cotumaccio N; GSSI, Italy.
  • Gagie T; Dalhousie University, Canada.
  • Köppl D; Dalhousie University, Canada.
  • Prezza N; University of Münster, Germany.
Int Symp String Process Inf Retr ; 14240: 143-156, 2023 Sep.
Article in En | MEDLINE | ID: mdl-39108943
ABSTRACT
Recently, Conte et al. generalized the longest-common prefix (LCP) array from strings to Wheeler DFAs, and they showed that it can be used to efficiently determine matching statistics on a Wheeler DFA [DCC 2023]. However, storing the LCP array requires O n log n bits, n being the number of states, while the compact representation of Wheeler DFAs often requires much less space. In particular, the BOSS representation of a de Bruijn graph only requires a linear number of bits, if the size of alphabet is constant. In this paper, we propose a sampling technique that allows to access an entry of the LCP array in logarithmic time by only storing a linear number of bits. We use our technique to provide a space-time tradeoff to compute matching statistics on a Wheeler DFA. In addition, we show that by augmenting the BOSS representation of a k -th order de Bruijn graph with a linear number of bits we can navigate the underlying variable-order de Bruijn graph in time logarithmic in k , thus improving a previous bound by Boucher et al. which was linear in k [DCC 2015].
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Int Symp String Process Inf Retr Year: 2023 Type: Article Affiliation country: Italy

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Int Symp String Process Inf Retr Year: 2023 Type: Article Affiliation country: Italy