Your browser doesn't support javascript.
loading
Crotonylation of NAE1 Modulates Cardiac Hypertrophy via Gelsolin Neddylation.
Ju, Jie; Wang, Kai; Liu, Fang; Liu, Cui-Yun; Wang, Yun-Hong; Wang, Shao-Chong; Zhou, Lu-Yu; Li, Xin-Min; Wang, Yu-Qin; Chen, Xin-Zhe; Li, Rui-Feng; Xu, Shi-Jun; Chen, Chen; Zhang, Mei-Hua; Yang, Su-Min; Tian, Jin-Wei; Wang, Kun.
Affiliation
  • Ju J; Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang).
  • Wang K; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, China (J.J., M.-H.Z., Kun Wang).
  • Liu F; School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China (J.J.).
  • Liu CY; Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang).
  • Wang YH; Department of Anatomy, Center of Diabetic Systems Medicine, and Guangxi Key Laboratory of Excellence, Guilin Medical University, China (F.L.).
  • Wang SC; Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang).
  • Zhou LY; Hypertension Center, Beijing Anzhen Hospital, Capital Medical University, China. (Y.-H.W.).
  • Li XM; Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang).
  • Wang YQ; Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang).
  • Chen XZ; Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang).
  • Li RF; Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang).
  • Xu SJ; Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang).
  • Chen C; Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang).
  • Zhang MH; Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, China. (S.-J.X.).
  • Yang SM; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.C.).
  • Tian JW; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, China (J.J., M.-H.Z., Kun Wang).
  • Wang K; Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang).
Circ Res ; 2024 Sep 04.
Article in En | MEDLINE | ID: mdl-39229723
ABSTRACT

BACKGROUND:

Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets. However, the function of crotonylated NAE1 has not been defined. This study aims to elucidate the effects and mechanisms of NAE1 crotonylation on cardiac hypertrophy.

METHODS:

Crotonylation levels were detected in both human and mouse subjects with cardiac hypertrophy through immunoprecipitation and Western blot assays. TMT-labeled quantitative lysine crotonylome analysis was performed to identify the crotonylated proteins in a mouse cardiac hypertrophic model induced by transverse aortic constriction. We generated NAE1 knock-in mice carrying a crotonylation-defective lysine to arginine K238R (lysine to arginine mutation at site 238) mutation (NAE1 K238R) and NAE1 knock-in mice expressing a crotonylation-mimicking lysine to glutamine K238Q (lysine to glutamine mutation at site 238) mutation (NAE1 K238Q) to assess the functional role of crotonylation of NAE1 at K238 in pathological cardiac hypertrophy. Furthermore, we combined coimmunoprecipitation, mass spectrometry, and dot blot analysis that was followed by multiple molecular biological methodologies to identify the target GSN (gelsolin) and corresponding molecular events contributing to the function of NAE1 K238 crotonylation.

RESULTS:

The crotonylation level of NAE1 was increased in mice and patients with cardiac hypertrophy. Quantitative crotonylomics analysis revealed that K238 was the main crotonylation site of NAE1. Loss of K238 crotonylation in NAE1 K238R knock-in mice attenuated cardiac hypertrophy and restored the heart function, while hypercrotonylation mimic in NAE1 K238Q knock-in mice significantly enhanced transverse aortic constriction-induced pathological hypertrophic response, leading to impaired cardiac structure and function. The recombinant adenoviral vector carrying NAE1 K238R mutant attenuated, while the K238Q mutant aggravated Ang II (angiotensin II)-induced hypertrophy. Mechanistically, we identified GSN as a direct target of NAE1. K238 crotonylation of NAE1 promoted GSN neddylation and, thus, enhanced its protein stability and expression. NAE1 crotonylation-dependent increase of GSN promoted actin-severing activity, which resulted in adverse cytoskeletal remodeling and progression of pathological hypertrophy.

CONCLUSIONS:

Our findings provide new insights into the previously unrecognized role of crotonylation on nonhistone proteins during cardiac hypertrophy. We found that K238 crotonylation of NAE1 plays an essential role in mediating cardiac hypertrophy through GSN neddylation, which provides potential novel therapeutic targets for pathological hypertrophy and cardiac remodeling.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Circ Res Year: 2024 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Circ Res Year: 2024 Type: Article