Deoxyribonucleoside kinases belonging to the thymidine kinase 2 (TK2)-like group vary significantly in substrate specificity, kinetics and feed-back regulation.
J Mol Biol
; 315(4): 529-40, 2002 Jan 25.
Article
en En
| MEDLINE
| ID: mdl-11812127
In eukaryotic cells deoxyribonucleoside kinases belonging to three phylogenetic sub-families have been found: (i) thymidine kinase 1 (TK1)-like enzymes, which are strictly pyrimidine deoxyribonucleoside-specific kinases; (ii) TK2-like enzymes, which include pyrimidine deoxyribonucleoside kinases and a single multisubstrate kinase from Drosophila melanogaster (Dm-dNK); and (iii) deoxycytidine/deoxyguanosine kinase (dCK/dGK)-like enzymes, which are deoxycytidine and/or purine deoxyribonucleoside-specific kinases. We cloned and characterized two new deoxyribonucleoside kinases belonging to the TK2-like group from the insect Bombyx mori and the amphibian Xenopus laevis. The deoxyribonucleoside kinase from B. mori (Bm-dNK) turned out to be a multisubstrate kinase like Dm-dNK. But uniquely for a deoxyribonucleoside kinase, Bm-dNK displayed positive cooperativity with all four natural deoxyribonucleoside substrates. The deoxyribonucleoside kinase from X. laevis (Xen-PyK) resembled closely the human and mouse TK2 enzymes displaying their characteristic Michaelis-Menten kinetic with deoxycytidine and negative cooperativity with its second natural substrate thymidine. Bm-dNK, Dm-dNK and Xen-PyK were shown to be homodimers. Significant differences in the feedback inhibition by deoxyribonucleoside triphosphates between these three enzymes were found. The insect multisubstrate deoxyribonucleoside kinases Bm-dNK and Dm-dNK were only inhibited by thymidine triphosphate, while Xen-PyK was inhibited by thymidine and deoxycytidine triphosphate in a complex pattern depending on the deoxyribonucleoside substrate. The broad substrate specificity and different feedback regulation of the multisubstrate insect deoxyribonucleoside kinases may indicate that these enzymes have a different functional role than the other members of the TK2-like group.
Buscar en Google
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Bombyx
/
Timidina Quinasa
/
Xenopus laevis
/
Fosfotransferasas (Aceptor de Grupo Alcohol)
/
Retroalimentación Fisiológica
Tipo de estudio:
Prognostic_studies
Límite:
Animals
/
Humans
Idioma:
En
Revista:
J Mol Biol
Año:
2002
Tipo del documento:
Article
País de afiliación:
Dinamarca