Your browser doesn't support javascript.
loading
Genetic structure of the forest herb Primula elatior in a changing landscape.
Jacquemyn, Hans; Honnay, Olivier; Galbusera, Peter; Roldán-Ruiz, Isabel.
Afiliación
  • Jacquemyn H; Laboratory for Forest, Nature and Landscape Research, University of Leuven, Belgium. hans.jacquemyn@agr.kuleuven.ac.be
Mol Ecol ; 13(1): 211-9, 2004 Jan.
Article en En | MEDLINE | ID: mdl-14653801
ABSTRACT
To investigate whether changes in land use and associated forest patch turnover affected genetic diversity and structure of the forest herb Primula elatior, historical data on landscape changes were combined with a population genetic analysis using dominant amplified fragment length polymorphism markers. Based on nine topographic maps, landscape history was reconstructed and forest patches were assigned to two age classes young (less than 35 years) and old (more than 35 years). The level of differentiation among Primula populations in recently established patches was compared with the level of differentiation among populations in older patches. Genetic diversity was independent of population size (P > 0.05). Most genetic variation was present within populations. Within-population diversity levels tended to be higher for populations located in older forests compared with those for populations located in young forests (Hj = 0.297 and 0.285, respectively). Total gene diversity was also higher for old than for young populations (Ht = 0.2987 and 0.2828, respectively). The global fixation index FST averaged over loci was low, but significant. Populations in older patches were significantly more differentiated from each other than were populations in recently established patches and they showed significant isolation by distance. In contrast, no significant correlations between pairwise geographical distance and FST were found for populations in recently established patches. The location of young and old populations in the studied system and altered gene flow because of increased population density and decreased inter-patch distances between extant populations may explain the observed lower genetic differentiation in the younger populations. This study exemplifies the importance of incorporating data on historical landscape changes in population genetic research at the landscape scale.
Asunto(s)
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Variación Genética / Primula / Ambiente / Genética de Población País/Región como asunto: Europa Idioma: En Revista: Mol Ecol Asunto de la revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Año: 2004 Tipo del documento: Article País de afiliación: Bélgica
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Variación Genética / Primula / Ambiente / Genética de Población País/Región como asunto: Europa Idioma: En Revista: Mol Ecol Asunto de la revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Año: 2004 Tipo del documento: Article País de afiliación: Bélgica