Building kernels from binary strings for image matching.
IEEE Trans Image Process
; 14(2): 169-80, 2005 Feb.
Article
en En
| MEDLINE
| ID: mdl-15700522
In the statistical learning framework, the use of appropriate kernels may be the key for substantial improvement in solving a given problem. In essence, a kernel is a similarity measure between input points satisfying some mathematical requirements and possibly capturing the domain knowledge. In this paper, we focus on kernels for images: we represent the image information content with binary strings and discuss various bitwise manipulations obtained using logical operators and convolution with nonbinary stencils. In the theoretical contribution of our work, we show that histogram intersection is a Mercer's kernel and we determine the modifications under which a similarity measure based on the notion of Hausdorff distance is also a Mercer's kernel. In both cases, we determine explicitly the mapping from input to feature space. The presented experimental results support the relevance of our analysis for developing effective trainable systems.
Buscar en Google
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Procesamiento de Señales Asistido por Computador
/
Reconocimiento de Normas Patrones Automatizadas
/
Inteligencia Artificial
/
Interpretación de Imagen Asistida por Computador
/
Técnica de Sustracción
/
Imagenología Tridimensional
Tipo de estudio:
Diagnostic_studies
/
Evaluation_studies
Idioma:
En
Revista:
IEEE Trans Image Process
Asunto de la revista:
INFORMATICA MEDICA
Año:
2005
Tipo del documento:
Article
País de afiliación:
Italia