Your browser doesn't support javascript.
loading
Two-photon imaging of glutathione levels in intact brain indicates enhanced redox buffering in developing neurons and cells at the cerebrospinal fluid and blood-brain interface.
Sun, Xiaojian; Shih, Andy Y; Johannssen, Helge C; Erb, Heidi; Li, Ping; Murphy, Timothy H.
Afiliación
  • Sun X; Departments of Psychiatry, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.
  • Shih AY; Departments of Psychiatry, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.
  • Johannssen HC; Departments of Psychiatry, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.
  • Erb H; Departments of Psychiatry, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.
  • Li P; Departments of Psychiatry, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.
  • Murphy TH; Departments of Psychiatry, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada; Departments of Physiology, Kinsmen Laboratory of Neurological Research and Brain Research Centre, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada. Electronic address: t
J Biol Chem ; 281(25): 17420-17431, 2006 Jun 23.
Article en En | MEDLINE | ID: mdl-16624809
Glutathione is the major cellular thiol present in mammalian cells and is critical for maintenance of redox homeostasis. However, current assay systems for glutathione lack application to intact animal tissues. To map the levels of glutathione in intact brain with cellular resolution (acute tissue slices and live animals), we have used two-photon imaging of monochlorobimane fluorescence, a selective enzyme-mediated marker for reduced glutathione. Previously, in vitro experiments using purified components and cultured glial cells attributed cellular monochlorobimane fluorescence to a glutathione S-transferase-dependent reaction with GSH. Our results indicate that cells at the cerebrospinal fluid or blood-brain interface, such as lateral ventricle ependymal cells (2.73 +/- 0.56 mm; glutathione), meningeal cells (1.45 +/- 0.09 mm), and astroglia (0.91 +/- 0.08 mm), contain high levels of glutathione. In comparison, layer II cortical neurons contained 20% (0.21 +/- 0.02 mm) the glutathione content of nearby astrocytes. Neuronal glutathione labeling increased 250% by the addition of the cell-permeable glutathione precursor N-acetylcysteine indicating that the monochlorobimane level or glutathione S-transferase activity within neurons was not limiting. Regional mapping showed that glutathione was highest in cells lining the lateral ventricles, specifically ependymal cells and the subventricular zone, suggesting a possible function for glutathione in oxidant homeostasis of developing neuronal progenitors. Consistently, developing neurons in the subgranular zone of dentate gyrus contained 3-fold more glutathione than older neurons found in the neighboring granular layer. In conclusion, mapping of glutathione levels in intact brain demonstrates a unique role for enhanced redox potential in developing neurons and cells at the cerebrospinal fluid and blood-brain interface.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Líquido Cefalorraquídeo / Glutatión / Neuronas Límite: Animals Idioma: En Revista: J Biol Chem Año: 2006 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Líquido Cefalorraquídeo / Glutatión / Neuronas Límite: Animals Idioma: En Revista: J Biol Chem Año: 2006 Tipo del documento: Article País de afiliación: Canadá