Your browser doesn't support javascript.
loading
The role of gap phase processes in the biomass dynamics of tropical forests.
Feeley, Kenneth J; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Nur Supardi, M N; Kassim, Abd Rahman; Tan, Sylvester; Chave, Jérôme.
Afiliación
  • Feeley KJ; Center for Tropical Forest Science, Arnold Arboretum Asia Program, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA. kfeeley@oeb.harvard.edu
Proc Biol Sci ; 274(1627): 2857-64, 2007 Nov 22.
Article en En | MEDLINE | ID: mdl-17785266
ABSTRACT
The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four 'old-growth' tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr(-1)) and decreased at HKK (-0.56% yr(-1)) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Árboles / Clima Tropical Tipo de estudio: Diagnostic_studies País/Región como asunto: America central / Asia / Panama Idioma: En Revista: Proc Biol Sci Asunto de la revista: BIOLOGIA Año: 2007 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Árboles / Clima Tropical Tipo de estudio: Diagnostic_studies País/Región como asunto: America central / Asia / Panama Idioma: En Revista: Proc Biol Sci Asunto de la revista: BIOLOGIA Año: 2007 Tipo del documento: Article País de afiliación: Estados Unidos